# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import torch import argparse import numpy as np import json from PIL import Image from cotracker.utils.visualizer import Visualizer from cotracker.predictor import CoTrackerPredictor from tqdm import tqdm # Unfortunately MPS acceleration does not support all the features we require, # but we may be able to enable it in the future import cv2 DEFAULT_DEVICE = ( # "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" "cuda" if torch.cuda.is_available() else "cpu" ) def sort_frames(frame_name): return int(frame_name.split('.')[0]) def read_video_from_path_frame(path): # try: # reader = imageio.get_reader(path) # except Exception as e: # print("Error opening video file: ", e) # return None image_files = sorted(os.listdir(path), key=sort_frames) frames = [] for i, im in enumerate(image_files): frames.append(cv2.imread(os.path.join(path,im))) return np.stack(frames) def find_largest_inner_rectangle_coordinates(mask_gray): refine_dist = cv2.distanceTransform(mask_gray.astype(np.uint8), cv2.DIST_L2, 5, cv2.DIST_LABEL_PIXEL) _, maxVal, _, maxLoc = cv2.minMaxLoc(refine_dist) radius = int(maxVal) return maxLoc, radius # if DEFAULT_DEVICE == "mps": # os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--video_path", default="/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/VIPSeg/VIPSeg_Video_Generation_Test/imgs", help="path to a video", ) parser.add_argument( "--ann_path", default="/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/VIPSeg/VIPSeg_Video_Generation_Test/panomasks", help="path to a video", ) parser.add_argument( "--save_path", default="/mmu-ocr/weijiawu/MovieDiffusion/ShowAnything/data/VIPSeg/VIPSeg_Video_Generation_Test/trajectory_CoTracker", help="path to a video", ) parser.add_argument( "--mask_path", default="./assets/apple_mask.png", help="path to a segmentation mask", ) parser.add_argument( "--checkpoint", # default="./checkpoints/cotracker.pth", default=None, help="CoTracker model parameters", ) parser.add_argument("--grid_size", type=int, default=10, help="Regular grid size") parser.add_argument( "--grid_query_frame", type=int, default=0, help="Compute dense and grid tracks starting from this frame", ) parser.add_argument( "--backward_tracking", action="store_true", help="Compute tracks in both directions, not only forward", ) args = parser.parse_args() # load the input video frame by frame segm_mask = np.array(Image.open(os.path.join(args.mask_path))) segm_mask = torch.from_numpy(segm_mask)[None, None] if args.checkpoint is not None: model = CoTrackerPredictor(checkpoint=args.checkpoint) else: model = torch.hub.load("facebookresearch/co-tracker", "cotracker2") model = model.to(DEFAULT_DEVICE) for iiiiidx,video_name in tqdm(enumerate(os.listdir(args.video_path))): save_json = os.path.join(args.save_path,video_name+".json") # if iiiiidx<153: # continue # if video_name!="2cdbf5f0a7": # continue # if os.path.exists(save_json): # continue video_path_one = os.path.join(args.video_path,video_name) video = read_video_from_path_frame(video_path_one) video = torch.from_numpy(video).permute(0, 3, 1, 2)[None].float() video = video.to(DEFAULT_DEVICE) # video = video[:, :20] pred_tracks, pred_visibility = model( video, grid_size=args.grid_size, grid_query_frame=args.grid_query_frame, backward_tracking=args.backward_tracking, # segm_mask=segm_mask ) print("computed") # get the point in the first frame ann_dict = {} image_files = sorted(os.listdir(os.path.join(args.ann_path,video_name)), key=sort_frames) frames_mask = [] for i, im in enumerate(image_files): frames_mask.append(cv2.imread(os.path.join(os.path.join(args.ann_path,video_name),im))) mask = np.array(Image.open(os.path.join(args.ann_path,video_name,image_files[0]))) # image = np.array(Image.open(image_path)) check_ids = [i for i in np.unique(np.array(mask))] for index in check_ids: mask_array = (np.array(mask)==index)*1 center_coordinate,_ = find_largest_inner_rectangle_coordinates(mask_array) ann_dict[int(index)] = center_coordinate # get the points of the all frames new_dict = {} for index in ann_dict: # instance point in first frame point2 = ann_dict[index] inde_min = 0 distance_min = 1000000 for ii,point in enumerate(pred_tracks[0][0]): # 计算两个点的欧氏距离 distance = np.linalg.norm(np.array(point2) - point.cpu().numpy()) if distance