|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
from ...image_processor import PipelineImageInput, VaeImageProcessor |
|
from ...loaders import FromSingleFileMixin |
|
from ...models import AutoencoderKL, UNet2DConditionModel |
|
from ...schedulers import EulerDiscreteScheduler |
|
from ...utils import deprecate, logging |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def preprocess(image): |
|
warnings.warn( |
|
"The preprocess method is deprecated and will be removed in a future version. Please" |
|
" use VaeImageProcessor.preprocess instead", |
|
FutureWarning, |
|
) |
|
if isinstance(image, torch.Tensor): |
|
return image |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
w, h = image[0].size |
|
w, h = (x - x % 64 for x in (w, h)) |
|
|
|
image = [np.array(i.resize((w, h)))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = 2.0 * image - 1.0 |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, dim=0) |
|
return image |
|
|
|
|
|
class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, FromSingleFileMixin): |
|
r""" |
|
Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A [`EulerDiscreteScheduler`] to be used in combination with `unet` to denoise the encoded image latents. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->unet->vae" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: EulerDiscreteScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic") |
|
|
|
def _encode_prompt(self, prompt, device, do_classifier_free_guidance, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `list(int)`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
""" |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_length=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
text_encoder_out = self.text_encoder( |
|
text_input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
text_embeddings = text_encoder_out.hidden_states[-1] |
|
text_pooler_out = text_encoder_out.pooler_output |
|
|
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_length=True, |
|
return_tensors="pt", |
|
) |
|
|
|
uncond_encoder_out = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
uncond_embeddings = uncond_encoder_out.hidden_states[-1] |
|
uncond_pooler_out = uncond_encoder_out.pooler_output |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
text_pooler_out = torch.cat([uncond_pooler_out, text_pooler_out]) |
|
|
|
return text_embeddings, text_pooler_out |
|
|
|
|
|
def decode_latents(self, latents): |
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" |
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def check_inputs(self, prompt, image, callback_steps): |
|
if not isinstance(prompt, str) and not isinstance(prompt, list): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if ( |
|
not isinstance(image, torch.Tensor) |
|
and not isinstance(image, PIL.Image.Image) |
|
and not isinstance(image, list) |
|
): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}" |
|
) |
|
|
|
|
|
if isinstance(image, list) or isinstance(image, torch.Tensor): |
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
else: |
|
batch_size = len(prompt) |
|
if isinstance(image, list): |
|
image_batch_size = len(image) |
|
else: |
|
image_batch_size = image.shape[0] if image.ndim == 4 else 1 |
|
if batch_size != image_batch_size: |
|
raise ValueError( |
|
f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." |
|
" Please make sure that passed `prompt` matches the batch size of `image`." |
|
) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height, width) |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
|
|
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float): |
|
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497. |
|
|
|
The suffixes after the scaling factors represent the stages where they are being applied. |
|
|
|
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values |
|
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL. |
|
|
|
Args: |
|
s1 (`float`): |
|
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
s2 (`float`): |
|
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to |
|
mitigate "oversmoothing effect" in the enhanced denoising process. |
|
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features. |
|
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features. |
|
""" |
|
if not hasattr(self, "unet"): |
|
raise ValueError("The pipeline must have `unet` for using FreeU.") |
|
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2) |
|
|
|
|
|
def disable_freeu(self): |
|
"""Disables the FreeU mechanism if enabled.""" |
|
self.unet.disable_freeu() |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: PipelineImageInput = None, |
|
num_inference_steps: int = 75, |
|
guidance_scale: float = 9.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide image upscaling. |
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a |
|
latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered |
|
a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and |
|
encoded using this pipeline's `vae` encoder. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
|
|
Examples: |
|
```py |
|
>>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline |
|
>>> import torch |
|
|
|
|
|
>>> pipeline = StableDiffusionPipeline.from_pretrained( |
|
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipeline.to("cuda") |
|
|
|
>>> model_id = "stabilityai/sd-x2-latent-upscaler" |
|
>>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
>>> upscaler.to("cuda") |
|
|
|
>>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic" |
|
>>> generator = torch.manual_seed(33) |
|
|
|
>>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent").images |
|
|
|
>>> with torch.no_grad(): |
|
... image = pipeline.decode_latents(low_res_latents) |
|
>>> image = pipeline.numpy_to_pil(image)[0] |
|
|
|
>>> image.save("../images/a1.png") |
|
|
|
>>> upscaled_image = upscaler( |
|
... prompt=prompt, |
|
... image=low_res_latents, |
|
... num_inference_steps=20, |
|
... guidance_scale=0, |
|
... generator=generator, |
|
... ).images[0] |
|
|
|
>>> upscaled_image.save("../images/a2.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images. |
|
""" |
|
|
|
|
|
self.check_inputs(prompt, image, callback_steps) |
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if guidance_scale == 0: |
|
prompt = [""] * batch_size |
|
|
|
|
|
text_embeddings, text_pooler_out = self._encode_prompt( |
|
prompt, device, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
|
|
image = self.image_processor.preprocess(image) |
|
image = image.to(dtype=text_embeddings.dtype, device=device) |
|
if image.shape[1] == 3: |
|
|
|
image = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
batch_multiplier = 2 if do_classifier_free_guidance else 1 |
|
image = image[None, :] if image.ndim == 3 else image |
|
image = torch.cat([image] * batch_multiplier) |
|
|
|
|
|
|
|
|
|
noise_level = torch.tensor([0.0], dtype=torch.float32, device=device) |
|
noise_level = torch.cat([noise_level] * image.shape[0]) |
|
inv_noise_level = (noise_level**2 + 1) ** (-0.5) |
|
|
|
image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None] |
|
image_cond = image_cond.to(text_embeddings.dtype) |
|
|
|
noise_level_embed = torch.cat( |
|
[ |
|
torch.ones(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device), |
|
torch.zeros(text_pooler_out.shape[0], 64, dtype=text_pooler_out.dtype, device=device), |
|
], |
|
dim=1, |
|
) |
|
|
|
timestep_condition = torch.cat([noise_level_embed, text_pooler_out], dim=1) |
|
|
|
|
|
height, width = image.shape[2:] |
|
num_channels_latents = self.vae.config.latent_channels |
|
latents = self.prepare_latents( |
|
batch_size, |
|
num_channels_latents, |
|
height * 2, |
|
width * 2, |
|
text_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
num_channels_image = image.shape[1] |
|
if num_channels_latents + num_channels_image != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_image`: {num_channels_image} " |
|
f" = {num_channels_latents+num_channels_image}. Please verify the config of" |
|
" `pipeline.unet` or your `image` input." |
|
) |
|
|
|
|
|
num_warmup_steps = 0 |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
sigma = self.scheduler.sigmas[i] |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
scaled_model_input = torch.cat([scaled_model_input, image_cond], dim=1) |
|
|
|
timestep = torch.log(sigma) * 0.25 |
|
|
|
noise_pred = self.unet( |
|
scaled_model_input, |
|
timestep, |
|
encoder_hidden_states=text_embeddings, |
|
timestep_cond=timestep_condition, |
|
).sample |
|
|
|
|
|
noise_pred = noise_pred[:, :-1] |
|
|
|
|
|
inv_sigma = 1 / (sigma**2 + 1) |
|
noise_pred = inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|