|
import inspect |
|
from typing import Callable, List, Optional, Union |
|
|
|
import PIL.Image |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModel |
|
|
|
from ....models import AutoencoderKL, UNet2DConditionModel |
|
from ....schedulers import KarrasDiffusionSchedulers |
|
from ....utils import logging |
|
from ...pipeline_utils import DiffusionPipeline |
|
from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline |
|
from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline |
|
from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class VersatileDiffusionPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
""" |
|
|
|
tokenizer: CLIPTokenizer |
|
image_feature_extractor: CLIPImageProcessor |
|
text_encoder: CLIPTextModel |
|
image_encoder: CLIPVisionModel |
|
image_unet: UNet2DConditionModel |
|
text_unet: UNet2DConditionModel |
|
vae: AutoencoderKL |
|
scheduler: KarrasDiffusionSchedulers |
|
|
|
def __init__( |
|
self, |
|
tokenizer: CLIPTokenizer, |
|
image_feature_extractor: CLIPImageProcessor, |
|
text_encoder: CLIPTextModel, |
|
image_encoder: CLIPVisionModel, |
|
image_unet: UNet2DConditionModel, |
|
text_unet: UNet2DConditionModel, |
|
vae: AutoencoderKL, |
|
scheduler: KarrasDiffusionSchedulers, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
image_feature_extractor=image_feature_extractor, |
|
text_encoder=text_encoder, |
|
image_encoder=image_encoder, |
|
image_unet=image_unet, |
|
text_unet=text_unet, |
|
vae=vae, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
@torch.no_grad() |
|
def image_variation( |
|
self, |
|
image: Union[torch.FloatTensor, PIL.Image.Image], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`): |
|
The image prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import VersatileDiffusionPipeline |
|
>>> import torch |
|
>>> import requests |
|
>>> from io import BytesIO |
|
>>> from PIL import Image |
|
|
|
>>> # let's download an initial image |
|
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" |
|
|
|
>>> response = requests.get(url) |
|
>>> image = Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
>>> pipe = VersatileDiffusionPipeline.from_pretrained( |
|
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> generator = torch.Generator(device="cuda").manual_seed(0) |
|
>>> image = pipe.image_variation(image, generator=generator).images[0] |
|
>>> image.save("./car_variation.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys() |
|
components = {name: component for name, component in self.components.items() if name in expected_components} |
|
return VersatileDiffusionImageVariationPipeline(**components)( |
|
image=image, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
) |
|
|
|
@torch.no_grad() |
|
def text_to_image( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide image generation. |
|
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import VersatileDiffusionPipeline |
|
>>> import torch |
|
|
|
>>> pipe = VersatileDiffusionPipeline.from_pretrained( |
|
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> generator = torch.Generator(device="cuda").manual_seed(0) |
|
>>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0] |
|
>>> image.save("./astronaut.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys() |
|
components = {name: component for name, component in self.components.items() if name in expected_components} |
|
temp_pipeline = VersatileDiffusionTextToImagePipeline(**components) |
|
output = temp_pipeline( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
) |
|
|
|
temp_pipeline._swap_unet_attention_blocks() |
|
|
|
return output |
|
|
|
@torch.no_grad() |
|
def dual_guided( |
|
self, |
|
prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], |
|
image: Union[str, List[str]], |
|
text_to_image_strength: float = 0.5, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide image generation. |
|
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import VersatileDiffusionPipeline |
|
>>> import torch |
|
>>> import requests |
|
>>> from io import BytesIO |
|
>>> from PIL import Image |
|
|
|
>>> # let's download an initial image |
|
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" |
|
|
|
>>> response = requests.get(url) |
|
>>> image = Image.open(BytesIO(response.content)).convert("RGB") |
|
>>> text = "a red car in the sun" |
|
|
|
>>> pipe = VersatileDiffusionPipeline.from_pretrained( |
|
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> generator = torch.Generator(device="cuda").manual_seed(0) |
|
>>> text_to_image_strength = 0.75 |
|
|
|
>>> image = pipe.dual_guided( |
|
... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator |
|
... ).images[0] |
|
>>> image.save("./car_variation.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is a list with the generated images. |
|
""" |
|
|
|
expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys() |
|
components = {name: component for name, component in self.components.items() if name in expected_components} |
|
temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components) |
|
output = temp_pipeline( |
|
prompt=prompt, |
|
image=image, |
|
text_to_image_strength=text_to_image_strength, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
) |
|
temp_pipeline._revert_dual_attention() |
|
|
|
return output |
|
|