|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import nullcontext |
|
from io import BytesIO |
|
from pathlib import Path |
|
|
|
import requests |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from huggingface_hub.utils import validate_hf_hub_args |
|
|
|
from ..utils import ( |
|
deprecate, |
|
is_accelerate_available, |
|
is_omegaconf_available, |
|
is_transformers_available, |
|
logging, |
|
) |
|
from ..utils.import_utils import BACKENDS_MAPPING |
|
|
|
|
|
if is_transformers_available(): |
|
pass |
|
|
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class FromSingleFileMixin: |
|
""" |
|
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`]. |
|
""" |
|
|
|
@classmethod |
|
def from_ckpt(cls, *args, **kwargs): |
|
deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead." |
|
deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False) |
|
return cls.from_single_file(*args, **kwargs) |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors` |
|
format. The pipeline is set in evaluation mode (`model.eval()`) by default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A link to the `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. |
|
- A path to a *file* containing all pipeline weights. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the safetensors weights are downloaded if they're available **and** if the |
|
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors |
|
weights. If set to `False`, safetensors weights are not loaded. |
|
extract_ema (`bool`, *optional*, defaults to `False`): |
|
Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield |
|
higher quality images for inference. Non-EMA weights are usually better for continuing finetuning. |
|
upcast_attention (`bool`, *optional*, defaults to `None`): |
|
Whether the attention computation should always be upcasted. |
|
image_size (`int`, *optional*, defaults to 512): |
|
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable |
|
Diffusion v2 base model. Use 768 for Stable Diffusion v2. |
|
prediction_type (`str`, *optional*): |
|
The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and |
|
the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2. |
|
num_in_channels (`int`, *optional*, defaults to `None`): |
|
The number of input channels. If `None`, it is automatically inferred. |
|
scheduler_type (`str`, *optional*, defaults to `"pndm"`): |
|
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm", |
|
"ddim"]`. |
|
load_safety_checker (`bool`, *optional*, defaults to `True`): |
|
Whether to load the safety checker or not. |
|
text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`): |
|
An instance of `CLIPTextModel` to use, specifically the |
|
[clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this |
|
parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed. |
|
vae (`AutoencoderKL`, *optional*, defaults to `None`): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If |
|
this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed. |
|
tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`): |
|
An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance |
|
of `CLIPTokenizer` by itself if needed. |
|
original_config_file (`str`): |
|
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be |
|
automatically inferred by looking for a key that only exists in SD2.0 models. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (for example the pipeline components of the |
|
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` |
|
method. See example below for more information. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import StableDiffusionPipeline |
|
|
|
>>> # Download pipeline from huggingface.co and cache. |
|
>>> pipeline = StableDiffusionPipeline.from_single_file( |
|
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors" |
|
... ) |
|
|
|
>>> # Download pipeline from local file |
|
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt |
|
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly") |
|
|
|
>>> # Enable float16 and move to GPU |
|
>>> pipeline = StableDiffusionPipeline.from_single_file( |
|
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt", |
|
... torch_dtype=torch.float16, |
|
... ) |
|
>>> pipeline.to("cuda") |
|
``` |
|
""" |
|
|
|
from ..pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt |
|
|
|
original_config_file = kwargs.pop("original_config_file", None) |
|
config_files = kwargs.pop("config_files", None) |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
revision = kwargs.pop("revision", None) |
|
extract_ema = kwargs.pop("extract_ema", False) |
|
image_size = kwargs.pop("image_size", None) |
|
scheduler_type = kwargs.pop("scheduler_type", "pndm") |
|
num_in_channels = kwargs.pop("num_in_channels", None) |
|
upcast_attention = kwargs.pop("upcast_attention", None) |
|
load_safety_checker = kwargs.pop("load_safety_checker", True) |
|
prediction_type = kwargs.pop("prediction_type", None) |
|
text_encoder = kwargs.pop("text_encoder", None) |
|
text_encoder_2 = kwargs.pop("text_encoder_2", None) |
|
vae = kwargs.pop("vae", None) |
|
controlnet = kwargs.pop("controlnet", None) |
|
adapter = kwargs.pop("adapter", None) |
|
tokenizer = kwargs.pop("tokenizer", None) |
|
tokenizer_2 = kwargs.pop("tokenizer_2", None) |
|
|
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
pipeline_name = cls.__name__ |
|
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] |
|
from_safetensors = file_extension == "safetensors" |
|
|
|
if from_safetensors and use_safetensors is False: |
|
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") |
|
|
|
|
|
stable_unclip = None |
|
model_type = None |
|
|
|
if pipeline_name in [ |
|
"StableDiffusionControlNetPipeline", |
|
"StableDiffusionControlNetImg2ImgPipeline", |
|
"StableDiffusionControlNetInpaintPipeline", |
|
]: |
|
from ..models.controlnet import ControlNetModel |
|
from ..pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
|
|
|
|
if not ( |
|
isinstance(controlnet, (ControlNetModel, MultiControlNetModel)) |
|
or isinstance(controlnet, (list, tuple)) |
|
and isinstance(controlnet[0], ControlNetModel) |
|
): |
|
raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.") |
|
elif "StableDiffusion" in pipeline_name: |
|
|
|
pass |
|
elif pipeline_name == "StableUnCLIPPipeline": |
|
model_type = "FrozenOpenCLIPEmbedder" |
|
stable_unclip = "txt2img" |
|
elif pipeline_name == "StableUnCLIPImg2ImgPipeline": |
|
model_type = "FrozenOpenCLIPEmbedder" |
|
stable_unclip = "img2img" |
|
elif pipeline_name == "PaintByExamplePipeline": |
|
model_type = "PaintByExample" |
|
elif pipeline_name == "LDMTextToImagePipeline": |
|
model_type = "LDMTextToImage" |
|
else: |
|
raise ValueError(f"Unhandled pipeline class: {pipeline_name}") |
|
|
|
|
|
has_valid_url_prefix = False |
|
valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"] |
|
for prefix in valid_url_prefixes: |
|
if pretrained_model_link_or_path.startswith(prefix): |
|
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] |
|
has_valid_url_prefix = True |
|
|
|
|
|
ckpt_path = Path(pretrained_model_link_or_path) |
|
if not ckpt_path.is_file(): |
|
if not has_valid_url_prefix: |
|
raise ValueError( |
|
f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}" |
|
) |
|
|
|
|
|
repo_id = "/".join(ckpt_path.parts[:2]) |
|
file_path = "/".join(ckpt_path.parts[2:]) |
|
|
|
if file_path.startswith("blob/"): |
|
file_path = file_path[len("blob/") :] |
|
|
|
if file_path.startswith("main/"): |
|
file_path = file_path[len("main/") :] |
|
|
|
pretrained_model_link_or_path = hf_hub_download( |
|
repo_id, |
|
filename=file_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
force_download=force_download, |
|
) |
|
|
|
pipe = download_from_original_stable_diffusion_ckpt( |
|
pretrained_model_link_or_path, |
|
pipeline_class=cls, |
|
model_type=model_type, |
|
stable_unclip=stable_unclip, |
|
controlnet=controlnet, |
|
adapter=adapter, |
|
from_safetensors=from_safetensors, |
|
extract_ema=extract_ema, |
|
image_size=image_size, |
|
scheduler_type=scheduler_type, |
|
num_in_channels=num_in_channels, |
|
upcast_attention=upcast_attention, |
|
load_safety_checker=load_safety_checker, |
|
prediction_type=prediction_type, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
vae=vae, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
original_config_file=original_config_file, |
|
config_files=config_files, |
|
local_files_only=local_files_only, |
|
) |
|
|
|
if torch_dtype is not None: |
|
pipe.to(dtype=torch_dtype) |
|
|
|
return pipe |
|
|
|
|
|
class FromOriginalVAEMixin: |
|
""" |
|
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into an [`AutoencoderKL`]. |
|
""" |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or |
|
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A link to the `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. |
|
- A path to a *file* containing all pipeline weights. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to True, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
image_size (`int`, *optional*, defaults to 512): |
|
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable |
|
Diffusion v2 base model. Use 768 for Stable Diffusion v2. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the safetensors weights are downloaded if they're available **and** if the |
|
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors |
|
weights. If set to `False`, safetensors weights are not loaded. |
|
upcast_attention (`bool`, *optional*, defaults to `None`): |
|
Whether the attention computation should always be upcasted. |
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z |
|
= 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution |
|
Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (for example the pipeline components of the |
|
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` |
|
method. See example below for more information. |
|
|
|
<Tip warning={true}> |
|
|
|
Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading |
|
a VAE from SDXL or a Stable Diffusion v2 model or higher. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
```py |
|
from diffusers import AutoencoderKL |
|
|
|
url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file |
|
model = AutoencoderKL.from_single_file(url) |
|
``` |
|
""" |
|
if not is_omegaconf_available(): |
|
raise ValueError(BACKENDS_MAPPING["omegaconf"][1]) |
|
|
|
from omegaconf import OmegaConf |
|
|
|
from ..models import AutoencoderKL |
|
|
|
|
|
from ..pipelines.stable_diffusion.convert_from_ckpt import ( |
|
convert_ldm_vae_checkpoint, |
|
create_vae_diffusers_config, |
|
) |
|
|
|
config_file = kwargs.pop("config_file", None) |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
revision = kwargs.pop("revision", None) |
|
image_size = kwargs.pop("image_size", None) |
|
scaling_factor = kwargs.pop("scaling_factor", None) |
|
kwargs.pop("upcast_attention", None) |
|
|
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] |
|
from_safetensors = file_extension == "safetensors" |
|
|
|
if from_safetensors and use_safetensors is False: |
|
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") |
|
|
|
|
|
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]: |
|
if pretrained_model_link_or_path.startswith(prefix): |
|
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] |
|
|
|
|
|
ckpt_path = Path(pretrained_model_link_or_path) |
|
if not ckpt_path.is_file(): |
|
|
|
repo_id = "/".join(ckpt_path.parts[:2]) |
|
file_path = "/".join(ckpt_path.parts[2:]) |
|
|
|
if file_path.startswith("blob/"): |
|
file_path = file_path[len("blob/") :] |
|
|
|
if file_path.startswith("main/"): |
|
file_path = file_path[len("main/") :] |
|
|
|
pretrained_model_link_or_path = hf_hub_download( |
|
repo_id, |
|
filename=file_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
force_download=force_download, |
|
) |
|
|
|
if from_safetensors: |
|
from safetensors import safe_open |
|
|
|
checkpoint = {} |
|
with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
checkpoint[key] = f.get_tensor(key) |
|
else: |
|
checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu") |
|
|
|
if "state_dict" in checkpoint: |
|
checkpoint = checkpoint["state_dict"] |
|
|
|
if config_file is None: |
|
config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" |
|
config_file = BytesIO(requests.get(config_url).content) |
|
|
|
original_config = OmegaConf.load(config_file) |
|
|
|
|
|
image_size = image_size or 512 |
|
|
|
vae_config = create_vae_diffusers_config(original_config, image_size=image_size) |
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) |
|
|
|
if scaling_factor is None: |
|
if ( |
|
"model" in original_config |
|
and "params" in original_config.model |
|
and "scale_factor" in original_config.model.params |
|
): |
|
vae_scaling_factor = original_config.model.params.scale_factor |
|
else: |
|
vae_scaling_factor = 0.18215 |
|
|
|
vae_config["scaling_factor"] = vae_scaling_factor |
|
|
|
ctx = init_empty_weights if is_accelerate_available() else nullcontext |
|
with ctx(): |
|
vae = AutoencoderKL(**vae_config) |
|
|
|
if is_accelerate_available(): |
|
from ..models.modeling_utils import load_model_dict_into_meta |
|
|
|
load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu") |
|
else: |
|
vae.load_state_dict(converted_vae_checkpoint) |
|
|
|
if torch_dtype is not None: |
|
vae.to(dtype=torch_dtype) |
|
|
|
return vae |
|
|
|
|
|
class FromOriginalControlnetMixin: |
|
""" |
|
Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`]. |
|
""" |
|
|
|
@classmethod |
|
@validate_hf_hub_args |
|
def from_single_file(cls, pretrained_model_link_or_path, **kwargs): |
|
r""" |
|
Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or |
|
`.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default. |
|
|
|
Parameters: |
|
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
- A link to the `.ckpt` file (for example |
|
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub. |
|
- A path to a *file* containing all pipeline weights. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the |
|
dtype is automatically derived from the model's weights. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to True, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
use_safetensors (`bool`, *optional*, defaults to `None`): |
|
If set to `None`, the safetensors weights are downloaded if they're available **and** if the |
|
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors |
|
weights. If set to `False`, safetensors weights are not loaded. |
|
image_size (`int`, *optional*, defaults to 512): |
|
The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable |
|
Diffusion v2 base model. Use 768 for Stable Diffusion v2. |
|
upcast_attention (`bool`, *optional*, defaults to `None`): |
|
Whether the attention computation should always be upcasted. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load and saveable variables (for example the pipeline components of the |
|
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__` |
|
method. See example below for more information. |
|
|
|
Examples: |
|
|
|
```py |
|
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel |
|
|
|
url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path |
|
model = ControlNetModel.from_single_file(url) |
|
|
|
url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path |
|
pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet) |
|
``` |
|
""" |
|
|
|
from ..pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt |
|
|
|
config_file = kwargs.pop("config_file", None) |
|
cache_dir = kwargs.pop("cache_dir", None) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
num_in_channels = kwargs.pop("num_in_channels", None) |
|
use_linear_projection = kwargs.pop("use_linear_projection", None) |
|
revision = kwargs.pop("revision", None) |
|
extract_ema = kwargs.pop("extract_ema", False) |
|
image_size = kwargs.pop("image_size", None) |
|
upcast_attention = kwargs.pop("upcast_attention", None) |
|
|
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
|
|
use_safetensors = kwargs.pop("use_safetensors", None) |
|
|
|
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1] |
|
from_safetensors = file_extension == "safetensors" |
|
|
|
if from_safetensors and use_safetensors is False: |
|
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.") |
|
|
|
|
|
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]: |
|
if pretrained_model_link_or_path.startswith(prefix): |
|
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :] |
|
|
|
|
|
ckpt_path = Path(pretrained_model_link_or_path) |
|
if not ckpt_path.is_file(): |
|
|
|
repo_id = "/".join(ckpt_path.parts[:2]) |
|
file_path = "/".join(ckpt_path.parts[2:]) |
|
|
|
if file_path.startswith("blob/"): |
|
file_path = file_path[len("blob/") :] |
|
|
|
if file_path.startswith("main/"): |
|
file_path = file_path[len("main/") :] |
|
|
|
pretrained_model_link_or_path = hf_hub_download( |
|
repo_id, |
|
filename=file_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
force_download=force_download, |
|
) |
|
|
|
if config_file is None: |
|
config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml" |
|
config_file = BytesIO(requests.get(config_url).content) |
|
|
|
image_size = image_size or 512 |
|
|
|
controlnet = download_controlnet_from_original_ckpt( |
|
pretrained_model_link_or_path, |
|
original_config_file=config_file, |
|
image_size=image_size, |
|
extract_ema=extract_ema, |
|
num_in_channels=num_in_channels, |
|
upcast_attention=upcast_attention, |
|
from_safetensors=from_safetensors, |
|
use_linear_projection=use_linear_projection, |
|
) |
|
|
|
if torch_dtype is not None: |
|
controlnet.to(dtype=torch_dtype) |
|
|
|
return controlnet |
|
|