|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Dict, Union |
|
|
|
import torch |
|
from huggingface_hub.utils import validate_hf_hub_args |
|
from safetensors import safe_open |
|
|
|
from ..utils import ( |
|
_get_model_file, |
|
is_transformers_available, |
|
logging, |
|
) |
|
|
|
|
|
if is_transformers_available(): |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from ..models.attention_processor import ( |
|
IPAdapterAttnProcessor, |
|
IPAdapterAttnProcessor2_0, |
|
) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class IPAdapterMixin: |
|
"""Mixin for handling IP Adapters.""" |
|
|
|
@validate_hf_hub_args |
|
def load_ip_adapter( |
|
self, |
|
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], |
|
subfolder: str, |
|
weight_name: str, |
|
**kwargs, |
|
): |
|
""" |
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved |
|
with [`ModelMixin.save_pretrained`]. |
|
- A [torch state |
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). |
|
|
|
cache_dir (`Union[str, os.PathLike]`, *optional*): |
|
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache |
|
is not used. |
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any |
|
incompletely downloaded files are deleted. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
local_files_only (`bool`, *optional*, defaults to `False`): |
|
Whether to only load local model weights and configuration files or not. If set to `True`, the model |
|
won't be downloaded from the Hub. |
|
token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from |
|
`diffusers-cli login` (stored in `~/.huggingface`) is used. |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier |
|
allowed by Git. |
|
subfolder (`str`, *optional*, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
""" |
|
|
|
|
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
revision = kwargs.pop("revision", None) |
|
|
|
user_agent = { |
|
"file_type": "attn_procs_weights", |
|
"framework": "pytorch", |
|
} |
|
|
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
if weight_name.endswith(".safetensors"): |
|
state_dict = {"image_proj": {}, "ip_adapter": {}} |
|
with safe_open(model_file, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("image_proj."): |
|
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) |
|
elif key.startswith("ip_adapter."): |
|
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
keys = list(state_dict.keys()) |
|
if keys != ["image_proj", "ip_adapter"]: |
|
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.") |
|
|
|
|
|
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None: |
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}") |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
pretrained_model_name_or_path_or_dict, |
|
subfolder=os.path.join(subfolder, "image_encoder"), |
|
).to(self.device, dtype=self.dtype) |
|
self.image_encoder = image_encoder |
|
else: |
|
raise ValueError("`image_encoder` cannot be None when using IP Adapters.") |
|
|
|
|
|
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None: |
|
self.feature_extractor = CLIPImageProcessor() |
|
|
|
|
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
unet._load_ip_adapter_weights(state_dict) |
|
|
|
def set_ip_adapter_scale(self, scale): |
|
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet |
|
for attn_processor in unet.attn_processors.values(): |
|
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): |
|
attn_processor.scale = scale |
|
|