|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from ...configuration_utils import FrozenDict |
|
from ...image_processor import VaeImageProcessor |
|
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from ...models import AutoencoderKL, UNet2DConditionModel |
|
from ...models.lora import adjust_lora_scale_text_encoder |
|
from ...schedulers import DDIMInverseScheduler, KarrasDiffusionSchedulers |
|
from ...utils import ( |
|
PIL_INTERPOLATION, |
|
USE_PEFT_BACKEND, |
|
BaseOutput, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline |
|
from ..stable_diffusion import StableDiffusionPipelineOutput |
|
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class DiffEditInversionPipelineOutput(BaseOutput): |
|
""" |
|
Output class for Stable Diffusion pipelines. |
|
|
|
Args: |
|
latents (`torch.FloatTensor`) |
|
inverted latents tensor |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `num_timesteps * batch_size` or numpy array of shape `(num_timesteps, |
|
batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the |
|
diffusion pipeline. |
|
""" |
|
|
|
latents: torch.FloatTensor |
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
|
|
```py |
|
>>> import PIL |
|
>>> import requests |
|
>>> import torch |
|
>>> from io import BytesIO |
|
|
|
>>> from diffusers import StableDiffusionDiffEditPipeline |
|
|
|
|
|
>>> def download_image(url): |
|
... response = requests.get(url) |
|
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
>>> img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" |
|
|
|
>>> init_image = download_image(img_url).resize((768, 768)) |
|
|
|
>>> pipe = StableDiffusionDiffEditPipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.enable_model_cpu_offload() |
|
|
|
>>> mask_prompt = "A bowl of fruits" |
|
>>> prompt = "A bowl of pears" |
|
|
|
>>> mask_image = pipe.generate_mask(image=init_image, source_prompt=prompt, target_prompt=mask_prompt) |
|
>>> image_latents = pipe.invert(image=init_image, prompt=mask_prompt).latents |
|
>>> image = pipe(prompt=prompt, mask_image=mask_image, image_latents=image_latents).images[0] |
|
``` |
|
""" |
|
|
|
EXAMPLE_INVERT_DOC_STRING = """ |
|
```py |
|
>>> import PIL |
|
>>> import requests |
|
>>> import torch |
|
>>> from io import BytesIO |
|
|
|
>>> from diffusers import StableDiffusionDiffEditPipeline |
|
|
|
|
|
>>> def download_image(url): |
|
... response = requests.get(url) |
|
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
>>> img_url = "https://github.com/Xiang-cd/DiffEdit-stable-diffusion/raw/main/assets/origin.png" |
|
|
|
>>> init_image = download_image(img_url).resize((768, 768)) |
|
|
|
>>> pipe = StableDiffusionDiffEditPipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.enable_model_cpu_offload() |
|
|
|
>>> prompt = "A bowl of fruits" |
|
|
|
>>> inverted_latents = pipe.invert(image=init_image, prompt=prompt).latents |
|
``` |
|
""" |
|
|
|
|
|
def auto_corr_loss(hidden_states, generator=None): |
|
reg_loss = 0.0 |
|
for i in range(hidden_states.shape[0]): |
|
for j in range(hidden_states.shape[1]): |
|
noise = hidden_states[i : i + 1, j : j + 1, :, :] |
|
while True: |
|
roll_amount = torch.randint(noise.shape[2] // 2, (1,), generator=generator).item() |
|
reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean() ** 2 |
|
reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean() ** 2 |
|
|
|
if noise.shape[2] <= 8: |
|
break |
|
noise = torch.nn.functional.avg_pool2d(noise, kernel_size=2) |
|
return reg_loss |
|
|
|
|
|
def kl_divergence(hidden_states): |
|
return hidden_states.var() + hidden_states.mean() ** 2 - 1 - torch.log(hidden_states.var() + 1e-7) |
|
|
|
|
|
|
|
def preprocess(image): |
|
deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead" |
|
deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False) |
|
if isinstance(image, torch.Tensor): |
|
return image |
|
elif isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
w, h = image[0].size |
|
w, h = (x - x % 8 for x in (w, h)) |
|
|
|
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = 2.0 * image - 1.0 |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, dim=0) |
|
return image |
|
|
|
|
|
def preprocess_mask(mask, batch_size: int = 1): |
|
if not isinstance(mask, torch.Tensor): |
|
|
|
if isinstance(mask, PIL.Image.Image) or isinstance(mask, np.ndarray): |
|
mask = [mask] |
|
|
|
if isinstance(mask, list): |
|
if isinstance(mask[0], PIL.Image.Image): |
|
mask = [np.array(m.convert("L")).astype(np.float32) / 255.0 for m in mask] |
|
if isinstance(mask[0], np.ndarray): |
|
mask = np.stack(mask, axis=0) if mask[0].ndim < 3 else np.concatenate(mask, axis=0) |
|
mask = torch.from_numpy(mask) |
|
elif isinstance(mask[0], torch.Tensor): |
|
mask = torch.stack(mask, dim=0) if mask[0].ndim < 3 else torch.cat(mask, dim=0) |
|
|
|
|
|
if mask.ndim == 2: |
|
mask = mask.unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
if mask.ndim == 3: |
|
|
|
if mask.shape[0] == 1: |
|
mask = mask.unsqueeze(0) |
|
|
|
|
|
else: |
|
mask = mask.unsqueeze(1) |
|
|
|
|
|
if batch_size > 1: |
|
if mask.shape[0] == 1: |
|
mask = torch.cat([mask] * batch_size) |
|
elif mask.shape[0] > 1 and mask.shape[0] != batch_size: |
|
raise ValueError( |
|
f"`mask_image` with batch size {mask.shape[0]} cannot be broadcasted to batch size {batch_size} " |
|
f"inferred by prompt inputs" |
|
) |
|
|
|
if mask.shape[1] != 1: |
|
raise ValueError(f"`mask_image` must have 1 channel, but has {mask.shape[1]} channels") |
|
|
|
|
|
if mask.min() < 0 or mask.max() > 1: |
|
raise ValueError("`mask_image` should be in [0, 1] range") |
|
|
|
|
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
|
|
return mask |
|
|
|
|
|
class StableDiffusionDiffEditPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin): |
|
r""" |
|
<Tip warning={true}> |
|
|
|
This is an experimental feature! |
|
|
|
</Tip> |
|
|
|
Pipeline for text-guided image inpainting using Stable Diffusion and DiffEdit. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading and saving methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. |
|
inverse_scheduler ([`DDIMInverseScheduler`]): |
|
A scheduler to be used in combination with `unet` to fill in the unmasked part of the input latents. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->unet->vae" |
|
_optional_components = ["safety_checker", "feature_extractor", "inverse_scheduler"] |
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
inverse_scheduler: DDIMInverseScheduler, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration" |
|
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" |
|
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" |
|
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" |
|
" Hub, it would be very nice if you could open a Pull request for the" |
|
" `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["skip_prk_steps"] = True |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
inverse_scheduler=inverse_scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
**kwargs, |
|
): |
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." |
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
prompt_embeds_tuple = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
**kwargs, |
|
) |
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def decode_latents(self, latents): |
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" |
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
strength, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if (strength is None) or (strength is not None and (strength < 0 or strength > 1)): |
|
raise ValueError( |
|
f"The value of `strength` should in [0.0, 1.0] but is, but is {strength} of type {type(strength)}." |
|
) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
def check_source_inputs( |
|
self, |
|
source_prompt=None, |
|
source_negative_prompt=None, |
|
source_prompt_embeds=None, |
|
source_negative_prompt_embeds=None, |
|
): |
|
if source_prompt is not None and source_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `source_prompt`: {source_prompt} and `source_prompt_embeds`: {source_prompt_embeds}." |
|
" Please make sure to only forward one of the two." |
|
) |
|
elif source_prompt is None and source_prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `source_image` or `source_prompt_embeds`. Cannot leave all both of the arguments undefined." |
|
) |
|
elif source_prompt is not None and ( |
|
not isinstance(source_prompt, str) and not isinstance(source_prompt, list) |
|
): |
|
raise ValueError(f"`source_prompt` has to be of type `str` or `list` but is {type(source_prompt)}") |
|
|
|
if source_negative_prompt is not None and source_negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `source_negative_prompt`: {source_negative_prompt} and `source_negative_prompt_embeds`:" |
|
f" {source_negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if source_prompt_embeds is not None and source_negative_prompt_embeds is not None: |
|
if source_prompt_embeds.shape != source_negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`source_prompt_embeds` and `source_negative_prompt_embeds` must have the same shape when passed" |
|
f" directly, but got: `source_prompt_embeds` {source_prompt_embeds.shape} !=" |
|
f" `source_negative_prompt_embeds` {source_negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def get_inverse_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
|
|
|
|
if t_start == 0: |
|
return self.inverse_scheduler.timesteps, num_inference_steps |
|
timesteps = self.inverse_scheduler.timesteps[:-t_start] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_image_latents(self, image, batch_size, dtype, device, generator=None): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if image.shape[1] == 4: |
|
latents = image |
|
|
|
else: |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if isinstance(generator, list): |
|
latents = [ |
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) |
|
] |
|
latents = torch.cat(latents, dim=0) |
|
else: |
|
latents = self.vae.encode(image).latent_dist.sample(generator) |
|
|
|
latents = self.vae.config.scaling_factor * latents |
|
|
|
if batch_size != latents.shape[0]: |
|
if batch_size % latents.shape[0] == 0: |
|
|
|
deprecation_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {latents.shape[0]} initial" |
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" |
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" |
|
" your script to pass as many initial images as text prompts to suppress this warning." |
|
) |
|
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) |
|
additional_latents_per_image = batch_size // latents.shape[0] |
|
latents = torch.cat([latents] * additional_latents_per_image, dim=0) |
|
else: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
latents = torch.cat([latents], dim=0) |
|
|
|
return latents |
|
|
|
def get_epsilon(self, model_output: torch.Tensor, sample: torch.Tensor, timestep: int): |
|
pred_type = self.inverse_scheduler.config.prediction_type |
|
alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep] |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
if pred_type == "epsilon": |
|
return model_output |
|
elif pred_type == "sample": |
|
return (sample - alpha_prod_t ** (0.5) * model_output) / beta_prod_t ** (0.5) |
|
elif pred_type == "v_prediction": |
|
return (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`" |
|
) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def generate_mask( |
|
self, |
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
target_prompt: Optional[Union[str, List[str]]] = None, |
|
target_negative_prompt: Optional[Union[str, List[str]]] = None, |
|
target_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
target_negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
source_prompt: Optional[Union[str, List[str]]] = None, |
|
source_negative_prompt: Optional[Union[str, List[str]]] = None, |
|
source_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
source_negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
num_maps_per_mask: Optional[int] = 10, |
|
mask_encode_strength: Optional[float] = 0.5, |
|
mask_thresholding_ratio: Optional[float] = 3.0, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "np", |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
r""" |
|
Generate a latent mask given a mask prompt, a target prompt, and an image. |
|
|
|
Args: |
|
image (`PIL.Image.Image`): |
|
`Image` or tensor representing an image batch to be used for computing the mask. |
|
target_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide semantic mask generation. If not defined, you need to pass |
|
`prompt_embeds`. |
|
target_negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
target_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
target_negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
source_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide semantic mask generation using DiffEdit. If not defined, you need to |
|
pass `source_prompt_embeds` or `source_image` instead. |
|
source_negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide semantic mask generation away from using DiffEdit. If not defined, you |
|
need to pass `source_negative_prompt_embeds` or `source_image` instead. |
|
source_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings to guide the semantic mask generation. Can be used to easily tweak text |
|
inputs (prompt weighting). If not provided, text embeddings are generated from `source_prompt` input |
|
argument. |
|
source_negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings to negatively guide the semantic mask generation. Can be used to easily |
|
tweak text inputs (prompt weighting). If not provided, text embeddings are generated from |
|
`source_negative_prompt` input argument. |
|
num_maps_per_mask (`int`, *optional*, defaults to 10): |
|
The number of noise maps sampled to generate the semantic mask using DiffEdit. |
|
mask_encode_strength (`float`, *optional*, defaults to 0.5): |
|
The strength of the noise maps sampled to generate the semantic mask using DiffEdit. Must be between 0 |
|
and 1. |
|
mask_thresholding_ratio (`float`, *optional*, defaults to 3.0): |
|
The maximum multiple of the mean absolute difference used to clamp the semantic guidance map before |
|
mask binarization. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the |
|
[`~models.attention_processor.AttnProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
|
Examples: |
|
|
|
Returns: |
|
`List[PIL.Image.Image]` or `np.array`: |
|
When returning a `List[PIL.Image.Image]`, the list consists of a batch of single-channel binary images |
|
with dimensions `(height // self.vae_scale_factor, width // self.vae_scale_factor)`. If it's |
|
`np.array`, the shape is `(batch_size, height // self.vae_scale_factor, width // |
|
self.vae_scale_factor)`. |
|
""" |
|
|
|
|
|
self.check_inputs( |
|
target_prompt, |
|
mask_encode_strength, |
|
1, |
|
target_negative_prompt, |
|
target_prompt_embeds, |
|
target_negative_prompt_embeds, |
|
) |
|
|
|
self.check_source_inputs( |
|
source_prompt, |
|
source_negative_prompt, |
|
source_prompt_embeds, |
|
source_negative_prompt_embeds, |
|
) |
|
|
|
if (num_maps_per_mask is None) or ( |
|
num_maps_per_mask is not None and (not isinstance(num_maps_per_mask, int) or num_maps_per_mask <= 0) |
|
): |
|
raise ValueError( |
|
f"`num_maps_per_mask` has to be a positive integer but is {num_maps_per_mask} of type" |
|
f" {type(num_maps_per_mask)}." |
|
) |
|
|
|
if mask_thresholding_ratio is None or mask_thresholding_ratio <= 0: |
|
raise ValueError( |
|
f"`mask_thresholding_ratio` has to be positive but is {mask_thresholding_ratio} of type" |
|
f" {type(mask_thresholding_ratio)}." |
|
) |
|
|
|
|
|
if target_prompt is not None and isinstance(target_prompt, str): |
|
batch_size = 1 |
|
elif target_prompt is not None and isinstance(target_prompt, list): |
|
batch_size = len(target_prompt) |
|
else: |
|
batch_size = target_prompt_embeds.shape[0] |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
(cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None) |
|
target_negative_prompt_embeds, target_prompt_embeds = self.encode_prompt( |
|
target_prompt, |
|
device, |
|
num_maps_per_mask, |
|
do_classifier_free_guidance, |
|
target_negative_prompt, |
|
prompt_embeds=target_prompt_embeds, |
|
negative_prompt_embeds=target_negative_prompt_embeds, |
|
) |
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
target_prompt_embeds = torch.cat([target_negative_prompt_embeds, target_prompt_embeds]) |
|
|
|
source_negative_prompt_embeds, source_prompt_embeds = self.encode_prompt( |
|
source_prompt, |
|
device, |
|
num_maps_per_mask, |
|
do_classifier_free_guidance, |
|
source_negative_prompt, |
|
prompt_embeds=source_prompt_embeds, |
|
negative_prompt_embeds=source_negative_prompt_embeds, |
|
) |
|
if do_classifier_free_guidance: |
|
source_prompt_embeds = torch.cat([source_negative_prompt_embeds, source_prompt_embeds]) |
|
|
|
|
|
image = self.image_processor.preprocess(image).repeat_interleave(num_maps_per_mask, dim=0) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, _ = self.get_timesteps(num_inference_steps, mask_encode_strength, device) |
|
encode_timestep = timesteps[0] |
|
|
|
|
|
image_latents = self.prepare_image_latents( |
|
image, batch_size * num_maps_per_mask, self.vae.dtype, device, generator |
|
) |
|
noise = randn_tensor(image_latents.shape, generator=generator, device=device, dtype=self.vae.dtype) |
|
image_latents = self.scheduler.add_noise(image_latents, noise, encode_timestep) |
|
|
|
latent_model_input = torch.cat([image_latents] * (4 if do_classifier_free_guidance else 2)) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, encode_timestep) |
|
|
|
|
|
prompt_embeds = torch.cat([source_prompt_embeds, target_prompt_embeds]) |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
encode_timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_neg_src, noise_pred_source, noise_pred_uncond, noise_pred_target = noise_pred.chunk(4) |
|
noise_pred_source = noise_pred_neg_src + guidance_scale * (noise_pred_source - noise_pred_neg_src) |
|
noise_pred_target = noise_pred_uncond + guidance_scale * (noise_pred_target - noise_pred_uncond) |
|
else: |
|
noise_pred_source, noise_pred_target = noise_pred.chunk(2) |
|
|
|
|
|
|
|
mask_guidance_map = ( |
|
torch.abs(noise_pred_target - noise_pred_source) |
|
.reshape(batch_size, num_maps_per_mask, *noise_pred_target.shape[-3:]) |
|
.mean([1, 2]) |
|
) |
|
clamp_magnitude = mask_guidance_map.mean() * mask_thresholding_ratio |
|
semantic_mask_image = mask_guidance_map.clamp(0, clamp_magnitude) / clamp_magnitude |
|
semantic_mask_image = torch.where(semantic_mask_image <= 0.5, 0, 1) |
|
mask_image = semantic_mask_image.cpu().numpy() |
|
|
|
|
|
if output_type == "pil": |
|
mask_image = self.image_processor.numpy_to_pil(mask_image) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
return mask_image |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_INVERT_DOC_STRING) |
|
def invert( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
num_inference_steps: int = 50, |
|
inpaint_strength: float = 0.8, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
decode_latents: bool = False, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
lambda_auto_corr: float = 20.0, |
|
lambda_kl: float = 20.0, |
|
num_reg_steps: int = 0, |
|
num_auto_corr_rolls: int = 5, |
|
): |
|
r""" |
|
Generate inverted latents given a prompt and image. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`PIL.Image.Image`): |
|
`Image` or tensor representing an image batch to produce the inverted latents guided by `prompt`. |
|
inpaint_strength (`float`, *optional*, defaults to 0.8): |
|
Indicates extent of the noising process to run latent inversion. Must be between 0 and 1. When |
|
`inpaint_strength` is 1, the inversion process is run for the full number of iterations specified in |
|
`num_inference_steps`. `image` is used as a reference for the inversion process, and adding more noise |
|
increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
decode_latents (`bool`, *optional*, defaults to `False`): |
|
Whether or not to decode the inverted latents into a generated image. Setting this argument to `True` |
|
decodes all inverted latents for each timestep into a list of generated images. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.DiffEditInversionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the |
|
[`~models.attention_processor.AttnProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
lambda_auto_corr (`float`, *optional*, defaults to 20.0): |
|
Lambda parameter to control auto correction. |
|
lambda_kl (`float`, *optional*, defaults to 20.0): |
|
Lambda parameter to control Kullback-Leibler divergence output. |
|
num_reg_steps (`int`, *optional*, defaults to 0): |
|
Number of regularization loss steps. |
|
num_auto_corr_rolls (`int`, *optional*, defaults to 5): |
|
Number of auto correction roll steps. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] or |
|
`tuple`: |
|
If `return_dict` is `True`, |
|
[`~pipelines.stable_diffusion.pipeline_stable_diffusion_diffedit.DiffEditInversionPipelineOutput`] is |
|
returned, otherwise a `tuple` is returned where the first element is the inverted latents tensors |
|
ordered by increasing noise, and the second is the corresponding decoded images if `decode_latents` is |
|
`True`, otherwise `None`. |
|
""" |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
inpaint_strength, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
if image is None: |
|
raise ValueError("`image` input cannot be undefined.") |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
image = self.image_processor.preprocess(image) |
|
|
|
|
|
num_images_per_prompt = 1 |
|
latents = self.prepare_image_latents( |
|
image, batch_size * num_images_per_prompt, self.vae.dtype, device, generator |
|
) |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
self.inverse_scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_inverse_timesteps(num_inference_steps, inpaint_strength, device) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order |
|
inverted_latents = [] |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if num_reg_steps > 0: |
|
with torch.enable_grad(): |
|
for _ in range(num_reg_steps): |
|
if lambda_auto_corr > 0: |
|
for _ in range(num_auto_corr_rolls): |
|
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) |
|
|
|
|
|
var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) |
|
|
|
l_ac = auto_corr_loss(var_epsilon, generator=generator) |
|
l_ac.backward() |
|
|
|
grad = var.grad.detach() / num_auto_corr_rolls |
|
noise_pred = noise_pred - lambda_auto_corr * grad |
|
|
|
if lambda_kl > 0: |
|
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) |
|
|
|
|
|
var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) |
|
|
|
l_kld = kl_divergence(var_epsilon) |
|
l_kld.backward() |
|
|
|
grad = var.grad.detach() |
|
noise_pred = noise_pred - lambda_kl * grad |
|
|
|
noise_pred = noise_pred.detach() |
|
|
|
|
|
latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample |
|
inverted_latents.append(latents.detach().clone()) |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
assert len(inverted_latents) == len(timesteps) |
|
latents = torch.stack(list(reversed(inverted_latents)), 1) |
|
|
|
|
|
image = None |
|
if decode_latents: |
|
image = self.decode_latents(latents.flatten(0, 1)) |
|
|
|
|
|
if decode_latents and output_type == "pil": |
|
image = self.image_processor.numpy_to_pil(image) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (latents, image) |
|
|
|
return DiffEditInversionPipelineOutput(latents=latents, images=image) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
image_latents: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
inpaint_strength: Optional[float] = 0.8, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_ckip: int = None, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
mask_image (`PIL.Image.Image`): |
|
`Image` or tensor representing an image batch to mask the generated image. White pixels in the mask are |
|
repainted, while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a |
|
single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) |
|
instead of 3, so the expected shape would be `(B, 1, H, W)`. |
|
image_latents (`PIL.Image.Image` or `torch.FloatTensor`): |
|
Partially noised image latents from the inversion process to be used as inputs for image generation. |
|
inpaint_strength (`float`, *optional*, defaults to 0.8): |
|
Indicates extent to inpaint the masked area. Must be between 0 and 1. When `inpaint_strength` is 1, the |
|
denoising process is run on the masked area for the full number of iterations specified in |
|
`num_inference_steps`. `image_latents` is used as a reference for the masked area, and adding more |
|
noise to a region increases `inpaint_strength`. If `inpaint_strength` is 0, no inpainting occurs. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
inpaint_strength, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
if mask_image is None: |
|
raise ValueError( |
|
"`mask_image` input cannot be undefined. Use `generate_mask()` to compute `mask_image` from text prompts." |
|
) |
|
if image_latents is None: |
|
raise ValueError( |
|
"`image_latents` input cannot be undefined. Use `invert()` to compute `image_latents` from input images." |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=clip_ckip, |
|
) |
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
mask_image = preprocess_mask(mask_image, batch_size) |
|
latent_height, latent_width = mask_image.shape[-2:] |
|
mask_image = torch.cat([mask_image] * num_images_per_prompt) |
|
mask_image = mask_image.to(device=device, dtype=prompt_embeds.dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, inpaint_strength, device) |
|
|
|
|
|
if isinstance(image_latents, list) and any(isinstance(l, torch.Tensor) and l.ndim == 5 for l in image_latents): |
|
image_latents = torch.cat(image_latents).detach() |
|
elif isinstance(image_latents, torch.Tensor) and image_latents.ndim == 5: |
|
image_latents = image_latents.detach() |
|
else: |
|
image_latents = self.image_processor.preprocess(image_latents).detach() |
|
|
|
latent_shape = (self.vae.config.latent_channels, latent_height, latent_width) |
|
if image_latents.shape[-3:] != latent_shape: |
|
raise ValueError( |
|
f"Each latent image in `image_latents` must have shape {latent_shape}, " |
|
f"but has shape {image_latents.shape[-3:]}" |
|
) |
|
if image_latents.ndim == 4: |
|
image_latents = image_latents.reshape(batch_size, len(timesteps), *latent_shape) |
|
if image_latents.shape[:2] != (batch_size, len(timesteps)): |
|
raise ValueError( |
|
f"`image_latents` must have batch size {batch_size} with latent images from {len(timesteps)}" |
|
f" timesteps, but has batch size {image_latents.shape[0]} with latent images from" |
|
f" {image_latents.shape[1]} timesteps." |
|
) |
|
image_latents = image_latents.transpose(0, 1).repeat_interleave(num_images_per_prompt, dim=1) |
|
image_latents = image_latents.to(device=device, dtype=prompt_embeds.dtype) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
latents = image_latents[0].clone() |
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
latents = latents * mask_image + image_latents[i] * (1 - mask_image) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|