|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch import nn |
|
from transformers import CLIPPreTrainedModel, CLIPVisionModel |
|
|
|
from ...models.attention import BasicTransformerBlock |
|
from ...utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class PaintByExampleImageEncoder(CLIPPreTrainedModel): |
|
def __init__(self, config, proj_size=None): |
|
super().__init__(config) |
|
self.proj_size = proj_size or getattr(config, "projection_dim", 768) |
|
|
|
self.model = CLIPVisionModel(config) |
|
self.mapper = PaintByExampleMapper(config) |
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size) |
|
self.proj_out = nn.Linear(config.hidden_size, self.proj_size) |
|
|
|
|
|
self.uncond_vector = nn.Parameter(torch.randn((1, 1, self.proj_size))) |
|
|
|
def forward(self, pixel_values, return_uncond_vector=False): |
|
clip_output = self.model(pixel_values=pixel_values) |
|
latent_states = clip_output.pooler_output |
|
latent_states = self.mapper(latent_states[:, None]) |
|
latent_states = self.final_layer_norm(latent_states) |
|
latent_states = self.proj_out(latent_states) |
|
if return_uncond_vector: |
|
return latent_states, self.uncond_vector |
|
|
|
return latent_states |
|
|
|
|
|
class PaintByExampleMapper(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
num_layers = (config.num_hidden_layers + 1) // 5 |
|
hid_size = config.hidden_size |
|
num_heads = 1 |
|
self.blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock(hid_size, num_heads, hid_size, activation_fn="gelu", attention_bias=True) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
def forward(self, hidden_states): |
|
for block in self.blocks: |
|
hidden_states = block(hidden_states) |
|
|
|
return hidden_states |
|
|