|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from PIL import Image |
|
|
|
from ...models import UNet2DConditionModel, VQModel |
|
from ...schedulers import DDPMScheduler |
|
from ...utils import ( |
|
logging, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> import numpy as np |
|
|
|
>>> from diffusers import KandinskyV22PriorEmb2EmbPipeline, KandinskyV22ControlnetImg2ImgPipeline |
|
>>> from transformers import pipeline |
|
>>> from diffusers.utils import load_image |
|
|
|
|
|
>>> def make_hint(image, depth_estimator): |
|
... image = depth_estimator(image)["depth"] |
|
... image = np.array(image) |
|
... image = image[:, :, None] |
|
... image = np.concatenate([image, image, image], axis=2) |
|
... detected_map = torch.from_numpy(image).float() / 255.0 |
|
... hint = detected_map.permute(2, 0, 1) |
|
... return hint |
|
|
|
|
|
>>> depth_estimator = pipeline("depth-estimation") |
|
|
|
>>> pipe_prior = KandinskyV22PriorEmb2EmbPipeline.from_pretrained( |
|
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe_prior = pipe_prior.to("cuda") |
|
|
|
>>> pipe = KandinskyV22ControlnetImg2ImgPipeline.from_pretrained( |
|
... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> img = load_image( |
|
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
... "/kandinsky/cat.png" |
|
... ).resize((768, 768)) |
|
|
|
|
|
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda") |
|
|
|
>>> prompt = "A robot, 4k photo" |
|
>>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature" |
|
|
|
>>> generator = torch.Generator(device="cuda").manual_seed(43) |
|
|
|
>>> img_emb = pipe_prior(prompt=prompt, image=img, strength=0.85, generator=generator) |
|
>>> negative_emb = pipe_prior(prompt=negative_prior_prompt, image=img, strength=1, generator=generator) |
|
|
|
>>> images = pipe( |
|
... image=img, |
|
... strength=0.5, |
|
... image_embeds=img_emb.image_embeds, |
|
... negative_image_embeds=negative_emb.image_embeds, |
|
... hint=hint, |
|
... num_inference_steps=50, |
|
... generator=generator, |
|
... height=768, |
|
... width=768, |
|
... ).images |
|
|
|
>>> images[0].save("robot_cat.png") |
|
``` |
|
""" |
|
|
|
|
|
|
|
def downscale_height_and_width(height, width, scale_factor=8): |
|
new_height = height // scale_factor**2 |
|
if height % scale_factor**2 != 0: |
|
new_height += 1 |
|
new_width = width // scale_factor**2 |
|
if width % scale_factor**2 != 0: |
|
new_width += 1 |
|
return new_height * scale_factor, new_width * scale_factor |
|
|
|
|
|
|
|
def prepare_image(pil_image, w=512, h=512): |
|
pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) |
|
arr = np.array(pil_image.convert("RGB")) |
|
arr = arr.astype(np.float32) / 127.5 - 1 |
|
arr = np.transpose(arr, [2, 0, 1]) |
|
image = torch.from_numpy(arr).unsqueeze(0) |
|
return image |
|
|
|
|
|
class KandinskyV22ControlnetImg2ImgPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for image-to-image generation using Kandinsky |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
scheduler ([`DDIMScheduler`]): |
|
A scheduler to be used in combination with `unet` to generate image latents. |
|
unet ([`UNet2DConditionModel`]): |
|
Conditional U-Net architecture to denoise the image embedding. |
|
movq ([`VQModel`]): |
|
MoVQ Decoder to generate the image from the latents. |
|
""" |
|
|
|
model_cpu_offload_seq = "unet->movq" |
|
|
|
def __init__( |
|
self, |
|
unet: UNet2DConditionModel, |
|
scheduler: DDPMScheduler, |
|
movq: VQModel, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
unet=unet, |
|
scheduler=scheduler, |
|
movq=movq, |
|
) |
|
self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start:] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): |
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
if image.shape[1] == 4: |
|
init_latents = image |
|
|
|
else: |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
elif isinstance(generator, list): |
|
init_latents = [ |
|
self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = self.movq.encode(image).latent_dist.sample(generator) |
|
|
|
init_latents = self.movq.config.scaling_factor * init_latents |
|
|
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
|
|
latents = init_latents |
|
|
|
return latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], |
|
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], |
|
negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]], |
|
hint: torch.FloatTensor, |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 100, |
|
guidance_scale: float = 4.0, |
|
strength: float = 0.3, |
|
num_images_per_prompt: int = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "pil", |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): |
|
The clip image embeddings for text prompt, that will be used to condition the image generation. |
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded |
|
again. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` |
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of |
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will |
|
be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
hint (`torch.FloatTensor`): |
|
The controlnet condition. |
|
negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`): |
|
The clip image embeddings for negative text prompt, will be used to condition the image generation. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` |
|
(`np.array`) or `"pt"` (`torch.Tensor`). |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple` |
|
""" |
|
device = self._execution_device |
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if isinstance(image_embeds, list): |
|
image_embeds = torch.cat(image_embeds, dim=0) |
|
if isinstance(negative_image_embeds, list): |
|
negative_image_embeds = torch.cat(negative_image_embeds, dim=0) |
|
if isinstance(hint, list): |
|
hint = torch.cat(hint, dim=0) |
|
|
|
batch_size = image_embeds.shape[0] |
|
|
|
if do_classifier_free_guidance: |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
hint = hint.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( |
|
dtype=self.unet.dtype, device=device |
|
) |
|
hint = torch.cat([hint, hint], dim=0).to(dtype=self.unet.dtype, device=device) |
|
|
|
if not isinstance(image, list): |
|
image = [image] |
|
if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): |
|
raise ValueError( |
|
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" |
|
) |
|
|
|
image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) |
|
image = image.to(dtype=image_embeds.dtype, device=device) |
|
|
|
latents = self.movq.encode(image)["latents"] |
|
latents = latents.repeat_interleave(num_images_per_prompt, dim=0) |
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
height, width = downscale_height_and_width(height, width, self.movq_scale_factor) |
|
latents = self.prepare_latents( |
|
latents, latent_timestep, batch_size, num_images_per_prompt, image_embeds.dtype, device, generator |
|
) |
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
|
|
added_cond_kwargs = {"image_embeds": image_embeds, "hint": hint} |
|
noise_pred = self.unet( |
|
sample=latent_model_input, |
|
timestep=t, |
|
encoder_hidden_states=None, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
_, variance_pred_text = variance_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) |
|
|
|
if not ( |
|
hasattr(self.scheduler.config, "variance_type") |
|
and self.scheduler.config.variance_type in ["learned", "learned_range"] |
|
): |
|
noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) |
|
|
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, |
|
t, |
|
latents, |
|
generator=generator, |
|
)[0] |
|
|
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
image = self.movq.decode(latents, force_not_quantize=True)["sample"] |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if output_type not in ["pt", "np", "pil"]: |
|
raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") |
|
|
|
if output_type in ["np", "pil"]: |
|
image = image * 0.5 + 0.5 |
|
image = image.clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|