Spaces:
Configuration error
Configuration error
#!/usr/bin/env python3 | |
""" | |
Extra gRPC server for OpenVoice models. | |
""" | |
from concurrent import futures | |
import argparse | |
import signal | |
import sys | |
import os | |
import torch | |
from openvoice import se_extractor | |
from openvoice.api import ToneColorConverter | |
from melo.api import TTS | |
import time | |
import backend_pb2 | |
import backend_pb2_grpc | |
import grpc | |
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 | |
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1 | |
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) | |
# Implement the BackendServicer class with the service methods | |
class BackendServicer(backend_pb2_grpc.BackendServicer): | |
""" | |
A gRPC servicer for the backend service. | |
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding. | |
""" | |
def Health(self, request, context): | |
""" | |
A gRPC method that returns the health status of the backend service. | |
Args: | |
request: A HealthRequest object that contains the request parameters. | |
context: A grpc.ServicerContext object that provides information about the RPC. | |
Returns: | |
A Reply object that contains the health status of the backend service. | |
""" | |
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) | |
def LoadModel(self, request, context): | |
""" | |
A gRPC method that loads a model into memory. | |
Args: | |
request: A LoadModelRequest object that contains the request parameters. | |
context: A grpc.ServicerContext object that provides information about the RPC. | |
Returns: | |
A Result object that contains the result of the LoadModel operation. | |
""" | |
model_name = request.Model | |
try: | |
self.clonedVoice = False | |
# Assume directory from request.ModelFile. | |
# Only if request.LoraAdapter it's not an absolute path | |
if request.AudioPath and request.ModelFile != "" and not os.path.isabs(request.AudioPath): | |
# get base path of modelFile | |
modelFileBase = os.path.dirname(request.ModelFile) | |
request.AudioPath = os.path.join(modelFileBase, request.AudioPath) | |
if request.AudioPath != "": | |
self.clonedVoice = True | |
self.modelpath = request.ModelFile | |
self.speaker = request.Type | |
self.ClonedVoicePath = request.AudioPath | |
ckpt_converter = request.Model+'/converter' | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
self.device = device | |
self.tone_color_converter = None | |
if self.clonedVoice: | |
self.tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device) | |
self.tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth') | |
except Exception as err: | |
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
return backend_pb2.Result(message="Model loaded successfully", success=True) | |
def TTS(self, request, context): | |
model_name = request.model | |
if model_name == "": | |
return backend_pb2.Result(success=False, message="request.model is required") | |
try: | |
# Speed is adjustable | |
speed = 1.0 | |
voice = "EN" | |
if request.voice: | |
voice = request.voice | |
model = TTS(language=voice, device=self.device) | |
speaker_ids = model.hps.data.spk2id | |
speaker_key = self.speaker | |
modelpath = self.modelpath | |
for s in speaker_ids.keys(): | |
print(f"Speaker: {s} - ID: {speaker_ids[s]}") | |
speaker_id = speaker_ids[speaker_key] | |
speaker_key = speaker_key.lower().replace('_', '-') | |
source_se = torch.load(f'{modelpath}/base_speakers/ses/{speaker_key}.pth', map_location=self.device) | |
model.tts_to_file(request.text, speaker_id, request.dst, speed=speed) | |
if self.clonedVoice: | |
reference_speaker = self.ClonedVoicePath | |
target_se, audio_name = se_extractor.get_se(reference_speaker, self.tone_color_converter, vad=False) | |
# Run the tone color converter | |
encode_message = "@MyShell" | |
self.tone_color_converter.convert( | |
audio_src_path=request.dst, | |
src_se=source_se, | |
tgt_se=target_se, | |
output_path=request.dst, | |
message=encode_message) | |
print("[OpenVoice] TTS generated!", file=sys.stderr) | |
print("[OpenVoice] TTS saved to", request.dst, file=sys.stderr) | |
print(request, file=sys.stderr) | |
except Exception as err: | |
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
return backend_pb2.Result(success=True) | |
def serve(address): | |
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) | |
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) | |
server.add_insecure_port(address) | |
server.start() | |
print("[OpenVoice] Server started. Listening on: " + address, file=sys.stderr) | |
# Define the signal handler function | |
def signal_handler(sig, frame): | |
print("[OpenVoice] Received termination signal. Shutting down...") | |
server.stop(0) | |
sys.exit(0) | |
# Set the signal handlers for SIGINT and SIGTERM | |
signal.signal(signal.SIGINT, signal_handler) | |
signal.signal(signal.SIGTERM, signal_handler) | |
try: | |
while True: | |
time.sleep(_ONE_DAY_IN_SECONDS) | |
except KeyboardInterrupt: | |
server.stop(0) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Run the gRPC server.") | |
parser.add_argument( | |
"--addr", default="localhost:50051", help="The address to bind the server to." | |
) | |
args = parser.parse_args() | |
print(f"[OpenVoice] startup: {args}", file=sys.stderr) | |
serve(args.addr) | |