Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from pre import preprocess_uploaded_file | |
from jira_integration import ( | |
render_jira_login, | |
get_current_sprint, | |
get_regression_board, | |
get_sprint_issues, | |
calculate_points, | |
create_regression_task, | |
generate_task_content, | |
calculate_story_points, | |
get_project_metadata, | |
get_field_dependencies, | |
get_dependent_field_value, | |
get_boards, | |
get_functional_area_values | |
) | |
from datetime import datetime, timedelta | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import os | |
from dotenv import load_dotenv | |
import json | |
import logging | |
# Inject CSS to shrink metric font sizes and padding to prevent ellipsis overflow | |
if __name__ == "__main__": | |
st.markdown(""" | |
<style> | |
[data-testid="metric-container"] { | |
padding: 0.25rem 0.5rem !important; | |
min-width: 80px !important; | |
overflow: visible !important; | |
} | |
[data-testid="metric-container"] div { | |
white-space: nowrap !important; | |
text-overflow: clip !important; | |
} | |
[data-testid="metric-value"] { | |
font-size: 0.8rem !important; | |
} | |
[data-testid="metric-label"] { | |
font-size: 0.6rem !important; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
load_dotenv() | |
JIRA_SERVER = os.getenv("JIRA_SERVER") | |
# Initialize session state variables | |
if 'filtered_scenarios_df' not in st.session_state: | |
st.session_state.filtered_scenarios_df = None | |
if 'task_content' not in st.session_state: | |
st.session_state.task_content = None | |
if 'total_story_points' not in st.session_state: | |
st.session_state.total_story_points = 0 | |
if 'completed_points' not in st.session_state: | |
st.session_state.completed_points = 0 | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = "analysis" | |
if 'task_df' not in st.session_state: | |
st.session_state.task_df = None | |
if 'task_environment' not in st.session_state: | |
st.session_state.task_environment = None | |
if 'last_task_key' not in st.session_state: | |
st.session_state.last_task_key = None | |
if 'last_task_url' not in st.session_state: | |
st.session_state.last_task_url = None | |
if 'show_success' not in st.session_state: | |
st.session_state.show_success = False | |
# Get logger from jira_integration | |
logger = logging.getLogger("multiple") | |
# Function to capture button clicks with manual callback | |
def handle_task_button_click(summary, description, formatted_env, filtered_df): | |
logger.info("=== Task button clicked - Starting callback function ===") | |
try: | |
logger.info(f"Summary: {summary}") | |
logger.info(f"Description length: {len(description)}") | |
logger.info(f"Environment: {formatted_env}") | |
logger.info(f"DataFrame shape: {filtered_df.shape}") | |
# Import here to avoid circular imports | |
from jira_integration import create_regression_task | |
logger.info("Imported create_regression_task function") | |
# Call the actual function | |
with st.spinner("Creating task in Jira..."): | |
logger.info("About to call create_regression_task function") | |
task = create_regression_task( | |
project_key="RS", | |
summary=summary, | |
description=description, | |
environment=formatted_env, | |
filtered_scenarios_df=filtered_df | |
) | |
logger.info(f"create_regression_task returned: {task}") | |
if task: | |
logger.info(f"Task created successfully: {task.key}") | |
# Store task information in session state | |
st.session_state.last_task_key = task.key | |
st.session_state.last_task_url = f"{JIRA_SERVER}/browse/{task.key}" | |
st.session_state.show_success = True | |
# Display success message and task details | |
st.success("✅ Task created successfully!") | |
st.markdown( | |
f""" | |
<div style='padding: 10px; border-radius: 5px; border: 1px solid #90EE90; margin: 10px 0;'> | |
<h3 style='margin: 0; color: #90EE90;'>Task Details</h3> | |
<p style='margin: 10px 0;'>Task Key: {task.key}</p> | |
<a href='{JIRA_SERVER}/browse/{task.key}' target='_blank' | |
style='background-color: #90EE90; color: black; padding: 5px 10px; | |
border-radius: 3px; text-decoration: none; display: inline-block;'> | |
View Task in Jira | |
</a> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
# Clear task content | |
st.session_state.task_content = None | |
# Add button to create another task | |
if st.button("Create Another Task", key="create_another"): | |
# Clear all task-related state | |
st.session_state.task_content = None | |
st.session_state.last_task_key = None | |
st.session_state.last_task_url = None | |
st.session_state.show_success = False | |
st.rerun() | |
logger.info("Task creation process completed successfully") | |
return True | |
else: | |
logger.error("Task creation failed (returned None)") | |
st.error("❌ Task creation failed. Please check the error messages and try again.") | |
return False | |
except Exception as e: | |
logger.exception(f"Error in handle_task_button_click: {str(e)}") | |
st.error(f"❌ Error creating task: {str(e)}") | |
import traceback | |
error_trace = traceback.format_exc() | |
logger.error(f"Full traceback: {error_trace}") | |
st.error(error_trace) | |
return False | |
finally: | |
logger.info("=== Ending handle_task_button_click function ===") | |
# Define the function to perform analysis | |
def perform_analysis(uploaded_dataframes): | |
# Concatenate all dataframes into a single dataframe | |
combined_data = pd.concat(uploaded_dataframes, ignore_index=True) | |
# Display debugging information | |
# st.write("Combined data shape:", combined_data.shape) | |
# st.write("Unique functional areas in combined data:", combined_data['Functional area'].nunique()) | |
# st.write("Sample of combined data:", combined_data.head()) | |
# Display scenarios with status "failed" grouped by functional area | |
failed_scenarios = combined_data[combined_data['Status'] == 'FAILED'] | |
passed_scenarios = combined_data[combined_data['Status'] == 'PASSED'] | |
# Display total count of failures | |
fail_count = len(failed_scenarios) | |
st.markdown(f"Failing scenarios Count: {fail_count}") | |
# Display total count of Passing | |
pass_count = len(passed_scenarios) | |
st.markdown(f"Passing scenarios Count: {pass_count}") | |
# Use radio buttons for selecting status | |
selected_status = st.radio("Select a status", ['Failed', 'Passed']) | |
# Determine which scenarios to display based on selected status | |
if selected_status == 'Failed': | |
unique_areas = np.append(failed_scenarios['Functional area'].unique(), "All") | |
selected_scenarios = failed_scenarios | |
elif selected_status == 'Passed': | |
unique_areas = np.append(passed_scenarios['Functional area'].unique(), "All") | |
selected_scenarios = passed_scenarios | |
else: | |
selected_scenarios = None | |
if selected_scenarios is not None: | |
st.markdown(f"### Scenarios with status '{selected_status}' grouped by functional area:") | |
# Select a range of functional areas to filter scenarios | |
selected_functional_areas = st.multiselect("Select functional areas", unique_areas, ["All"]) | |
if "All" in selected_functional_areas: | |
filtered_scenarios = selected_scenarios | |
else: | |
filtered_scenarios = selected_scenarios[selected_scenarios['Functional area'].isin(selected_functional_areas)] | |
if not selected_functional_areas: # Check if the list is empty | |
st.error("Please select at least one functional area.") | |
else: | |
# Display count of filtered scenarios | |
st.write(f"Number of filtered scenarios: {len(filtered_scenarios)}") | |
# Calculate the average time spent for each functional area | |
average_time_spent_seconds = filtered_scenarios.groupby('Functional area')['Time spent'].mean().reset_index() | |
# Convert average time spent from seconds to minutes and seconds format | |
average_time_spent_seconds['Time spent'] = pd.to_datetime(average_time_spent_seconds['Time spent'], unit='s').dt.strftime('%M:%S') | |
# Group by functional area and get the start datetime for sorting | |
start_datetime_group = filtered_scenarios.groupby('Functional area')['Start datetime'].min().reset_index() | |
end_datetime_group = filtered_scenarios.groupby('Functional area')['End datetime'].max().reset_index() | |
# Calculate the total time spent for each functional area (difference between end and start datetime) | |
total_time_spent_seconds = (end_datetime_group['End datetime'] - start_datetime_group['Start datetime']).dt.total_seconds() | |
# Convert total time spent from seconds to minutes and seconds format | |
total_time_spent_seconds = pd.to_datetime(total_time_spent_seconds, unit='s').dt.strftime('%M:%S') | |
# Merge the average_time_spent_seconds with start_datetime_group and end_datetime_group | |
average_time_spent_seconds = average_time_spent_seconds.merge(start_datetime_group, on='Functional area') | |
average_time_spent_seconds = average_time_spent_seconds.merge(end_datetime_group, on='Functional area') | |
average_time_spent_seconds['Total Time Spent'] = total_time_spent_seconds | |
# Filter scenarios based on selected functional area | |
if selected_status == 'Failed': | |
# Define columns in the exact order they appear in the table | |
columns_to_keep = [ | |
'Environment', | |
'Functional area', | |
'Scenario Name', | |
'Error Message', | |
'Failed Step', | |
'Time spent(m:s)', | |
'Start datetime' | |
] | |
# Check if Failed Step column exists | |
if 'Failed Step' in filtered_scenarios.columns: | |
grouped_filtered_scenarios = filtered_scenarios[columns_to_keep].copy() | |
else: | |
columns_to_keep.remove('Failed Step') | |
grouped_filtered_scenarios = filtered_scenarios[columns_to_keep].copy() | |
elif selected_status == 'Passed': | |
grouped_filtered_scenarios = filtered_scenarios[[ | |
'Environment', | |
'Functional area', | |
'Scenario Name', | |
'Time spent(m:s)' | |
]].copy() | |
else: | |
grouped_filtered_scenarios = None | |
# Only proceed if we have data | |
if grouped_filtered_scenarios is not None: | |
# Reset the index to start from 1 | |
grouped_filtered_scenarios.index = range(1, len(grouped_filtered_scenarios) + 1) | |
st.dataframe(grouped_filtered_scenarios) | |
# Task creation section: always show button placeholder with tooltip, enabling only when conditions are met | |
can_create_task = ( | |
'jira_client' in st.session_state and | |
st.session_state.jira_client and | |
selected_status == 'Failed' and | |
len(selected_functional_areas) == 1 and | |
"All" not in selected_functional_areas | |
) | |
col1, col2, col3 = st.columns([1, 2, 1]) | |
with col2: | |
if st.session_state.show_success and st.session_state.last_task_key: | |
st.success("✅ Task created successfully!") | |
st.markdown( | |
f""" | |
<div style='padding: 10px; border-radius: 5px; border: 1px solid #90EE90; margin: 10px 0;'> | |
<h3 style='margin: 0; color: #90EE90;'>Task Details</h3> | |
<p style='margin: 10px 0;'>Task Key: {st.session_state.last_task_key}</p> | |
<a href='{st.session_state.last_task_url}' target='_blank' | |
style='background-color: #90EE90; color: black; padding: 5px 10px; | |
border-radius: 3px; text-decoration: none; display: inline-block;'> | |
View Task in Jira | |
</a> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
if st.button("Create Another Task", key="create_another", use_container_width=True): | |
st.session_state.task_content = None | |
st.session_state.last_task_key = None | |
st.session_state.last_task_url = None | |
st.session_state.show_success = False | |
st.rerun() | |
else: | |
help_text = ( | |
"Requires: Jira login, 'Failed' status selected, " | |
"and exactly one functional area (not 'All')." | |
) | |
if st.button( | |
"📝 Log Jira Task", | |
disabled=not can_create_task, | |
use_container_width=True, | |
help=help_text | |
) and can_create_task: | |
environment = filtered_scenarios['Environment'].iloc[0] | |
task_df = grouped_filtered_scenarios.copy() | |
expected_columns = [ | |
'Environment', | |
'Functional area', | |
'Scenario Name', | |
'Error Message', | |
'Failed Step', | |
'Time spent(m:s)', | |
'Start datetime' | |
] | |
missing_columns = [col for col in expected_columns if col not in task_df.columns] | |
if missing_columns: | |
st.error(f"Missing required columns: {', '.join(missing_columns)}") | |
st.error("Please ensure your data includes all required columns") | |
return | |
summary, description = generate_task_content(task_df) | |
if summary and description: | |
handle_task_button_click(summary, description, environment, task_df) | |
# Check if selected_status is 'Failed' and show bar graph | |
if selected_status != 'Passed': | |
# Create and display bar graph of errors by functional area | |
st.write(f"### Bar graph showing number of '{selected_status}' scenarios in each functional area:") | |
error_counts = grouped_filtered_scenarios['Functional area'].value_counts() | |
# Only create the graph if there are errors to display | |
if not error_counts.empty: | |
plt.figure(figsize=(12, 10)) | |
bars = plt.bar(error_counts.index, error_counts.values) | |
plt.xlabel('Functional Area') | |
plt.ylabel('Number of Failures') | |
plt.title(f"Number of '{selected_status}' scenarios by Functional Area") | |
plt.xticks(rotation=45, ha='right', fontsize=10) | |
# Set y-axis limits and ticks for consistent interval of 1 | |
y_max = max(error_counts.values) + 1 | |
plt.ylim(0, y_max) | |
plt.yticks(range(0, y_max, 1), fontsize=10) | |
# Display individual numbers on y-axis | |
for bar in bars: | |
height = bar.get_height() | |
# Annotate bar height, defaulting to 0 if conversion fails | |
try: | |
# Ensure numeric conversion in case of string 'NaN' | |
h_int = int(float(height)) | |
except Exception: | |
h_int = 0 | |
plt.text( | |
bar.get_x() + bar.get_width() / 2, | |
height, | |
str(h_int), | |
ha='center', | |
va='bottom' | |
) # Reduce font size of individual numbers | |
plt.tight_layout() # Add this line to adjust layout | |
st.pyplot(plt) | |
else: | |
st.info(f"No '{selected_status}' scenarios found to display in the graph.") | |
pass | |
def display_story_points_stats(force_refresh=False): | |
"""Display story points statistics from current sprint with caching""" | |
if not st.session_state.jira_client: | |
return | |
# Initialize cache | |
if 'sprint_data_cache' not in st.session_state: | |
st.session_state.sprint_data_cache = None | |
if 'last_sprint_fetch' not in st.session_state: | |
st.session_state.last_sprint_fetch = None | |
now = datetime.now() | |
cache_expiry = 300 # 5 minutes | |
refresh_needed = ( | |
force_refresh | |
or st.session_state.sprint_data_cache is None | |
or (st.session_state.last_sprint_fetch | |
and (now - st.session_state.last_sprint_fetch).total_seconds() > cache_expiry) | |
) | |
if refresh_needed: | |
if force_refresh: | |
with st.spinner("Fetching sprint data..."): | |
board = get_regression_board("RS") | |
if not board: | |
return | |
sprint = get_current_sprint(board['id']) | |
if not sprint: | |
return | |
issues = get_sprint_issues(board['id'], sprint.id, board['estimation_field']) | |
if not issues: | |
return | |
_, total_points, completed_points, in_progress_points = calculate_points( | |
issues, board['estimation_field'] | |
) | |
st.session_state.sprint_data_cache = { | |
'sprint_name': sprint.name, | |
'total_points': total_points, | |
'completed_points': completed_points, | |
'in_progress_points': in_progress_points | |
} | |
st.session_state.last_sprint_fetch = now | |
else: | |
# Fetch data silently without spinner | |
board = get_regression_board("RS") | |
if not board: | |
return | |
sprint = get_current_sprint(board['id']) | |
if not sprint: | |
return | |
issues = get_sprint_issues(board['id'], sprint.id, board['estimation_field']) | |
if not issues: | |
return | |
_, total_points, completed_points, in_progress_points = calculate_points( | |
issues, board['estimation_field'] | |
) | |
st.session_state.sprint_data_cache = { | |
'sprint_name': sprint.name, | |
'total_points': total_points, | |
'completed_points': completed_points, | |
'in_progress_points': in_progress_points | |
} | |
st.session_state.last_sprint_fetch = now | |
# Display cached sprint data | |
if st.session_state.sprint_data_cache: | |
sprint_data = st.session_state.sprint_data_cache | |
# Use markdown with custom HTML for a compact, non-truncating display | |
metrics_html = f""" | |
<div style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px; text-align: center; font-size: 0.8rem;"> | |
<div> | |
<div style="color: #888;">Total</div> | |
<div style="font-size: 1rem; font-weight: bold;">{sprint_data['total_points']:.1f}</div> | |
</div> | |
<div> | |
<div style="color: #888;">Done</div> | |
<div style="font-size: 1rem; font-weight: bold;">{sprint_data['completed_points']:.1f}</div> | |
</div> | |
<div> | |
<div style="color: #888;">In Progress</div> | |
<div style="font-size: 1rem; font-weight: bold;">{sprint_data['in_progress_points']:.1f}</div> | |
</div> | |
<div> | |
<div style="color: #888;">Complete</div> | |
<div style="font-size: 1rem; font-weight: bold;">{( | |
sprint_data['completed_points'] / sprint_data['total_points'] * 100 | |
if sprint_data['total_points'] > 0 else 0 | |
):.1f}%</div> | |
</div> | |
</div> | |
""" | |
st.markdown(metrics_html, unsafe_allow_html=True) | |
st.progress( | |
sprint_data['completed_points'] / sprint_data['total_points'] | |
if sprint_data['total_points'] > 0 else 0 | |
) | |
def show_task_creation_section(filtered_df, environment): | |
"""Display the task creation section with detailed functional area mapping information.""" | |
if "Functional area" in filtered_df.columns and len(filtered_df) > 0: | |
functional_areas = filtered_df["Functional area"].unique().tolist() | |
functional_area = functional_areas[0] if functional_areas else None | |
logger.debug(f"Found functional areas: {functional_areas}") | |
# Get project metadata to access allowed values | |
metadata = get_project_metadata("RS") | |
if metadata: | |
# Create expandable section for field structure | |
with st.expander("Functional Area Field Structure", expanded=False): | |
func_field = metadata['all_fields'].get('customfield_13100', {}) | |
if func_field and 'allowedValues' in func_field: | |
st.write("Available parent-child mappings:") | |
for parent in func_field['allowedValues']: | |
if isinstance(parent, dict): | |
parent_value = parent.get('value', 'Unknown') | |
st.markdown(f"**Parent: {parent_value}**") | |
if 'cascadingOptions' in parent: | |
child_values = [child.get('value') for child in parent['cascadingOptions'] if child.get('value')] | |
st.write("Child options:") | |
for child in sorted(child_values): | |
st.write(f" • {child}") | |
st.write("") | |
# Display current functional area and mapping attempt | |
st.subheader("Functional Area Mapping") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown("**Input Functional Area:**") | |
st.info(functional_area) | |
st.markdown("**Split Parts:**") | |
parts = functional_area.split(' - ') | |
for i, part in enumerate(parts, 1): | |
st.write(f"{i}. {part}") | |
with col2: | |
# Try to map the functional area | |
parent, child = map_functional_area(functional_area, metadata) | |
st.markdown("**Mapped Values:**") | |
st.success(f"Parent: {parent}") | |
st.success(f"Child: {child}") | |
# Show normalized form | |
st.markdown("**Normalized Form:**") | |
norm_area = functional_area.lower().replace(' ', '-') | |
st.info(norm_area) | |
# Add warning if using default mapping | |
if parent == "R&I" and child == "Data Exchange" and functional_area.lower() != "data exchange": | |
st.warning(""" | |
⚠️ Using default mapping (R&I/Data Exchange). This might not be the best match. | |
Please check the 'Functional Area Field Structure' above for available values. | |
""") | |
else: | |
logger.warning("No functional area found in data") | |
st.warning("No functional area information found in the data") | |
# Create task button | |
if st.button("Create Task", key="create_task_button"): | |
handle_task_button_click(filtered_df, environment) | |
def multiple_main(): | |
# Initialize session state variables | |
if 'current_page' not in st.session_state: | |
st.session_state.current_page = "upload" | |
if 'task_df' not in st.session_state: | |
st.session_state.task_df = None | |
if 'selected_files' not in st.session_state: | |
st.session_state.selected_files = [] | |
if 'uploaded_files' not in st.session_state: | |
st.session_state.uploaded_files = [] | |
if 'filtered_scenarios_df' not in st.session_state: | |
st.session_state.filtered_scenarios_df = None | |
if 'sprint_data_initialized' not in st.session_state: | |
st.session_state.sprint_data_initialized = False | |
st.title("Multiple File Analysis") | |
# Initialize session state for uploaded data | |
if 'uploaded_data' not in st.session_state: | |
st.session_state.uploaded_data = None | |
if 'last_refresh' not in st.session_state: | |
st.session_state.last_refresh = None | |
# Check if we're in task creation mode | |
if st.session_state.current_page == "create_task" and st.session_state.task_df is not None: | |
# Add a back button | |
if st.button("⬅️ Back to Analysis"): | |
st.session_state.current_page = "analysis" | |
st.rerun() | |
return | |
# Show task creation section | |
show_task_creation_section(st.session_state.task_df, st.session_state.task_environment) | |
return | |
# Main analysis page | |
uploaded_files = st.file_uploader("Upload CSV or Excel files", | |
type=['csv', 'xlsx'], | |
accept_multiple_files=True) | |
# Process uploaded files and store in session state | |
if uploaded_files: | |
all_data = [] | |
for file in uploaded_files: | |
try: | |
df = preprocess_uploaded_file(file) | |
all_data.append(df) | |
except Exception as e: | |
st.error(f"Error processing {file.name}: {str(e)}") | |
if all_data: | |
# Store the processed data in session state | |
st.session_state.uploaded_data = all_data | |
# Use data from session state for analysis | |
if st.session_state.uploaded_data: | |
# Perform analysis for uploaded data | |
perform_analysis(st.session_state.uploaded_data) | |
# Get combined data for Jira integration | |
combined_df = pd.concat(st.session_state.uploaded_data, ignore_index=True) | |
else: | |
st.write("Please upload at least one file.") | |
if __name__ == "__main__": | |
st.set_page_config(layout="wide") | |
multiple_main() | |