BananaSauce's picture
changes xlsx
3ff5801
raw
history blame
7.02 kB
import pandas as pd
import streamlit as st
import csv
import io
import openpyxl # Add this import for Excel handling
from datetime import datetime
import re
def preprocess_csv(input_bytes):
# Keep this for backward compatibility with CSV files
text = input_bytes.decode() # Decode bytes to text
output = io.StringIO()
writer = csv.writer(output)
for row in csv.reader(io.StringIO(text)): # Read text as csv
if len(row) > 5:
row = row[0:5] + [','.join(row[5:])] # Combine extra fields into one
writer.writerow(row)
output.seek(0) # go to the start of the StringIO object
return output
def load_data(file):
column_names = [
'Functional area',
'Scenario name',
'Start datetime',
'End datetime',
'Status',
'Error message'
]
data = pd.read_csv(file, header=None, names=column_names)
return data
@st.cache_data
def preprocess_xlsx(uploaded_file):
"""Process Excel file with step-level data and convert to scenario-level summary"""
# Define data types for columns
dtype_dict = {
'Feature Name': 'string',
'Scenario Name': 'string',
'Total Time Taken (ms)': 'float64'
}
# Read both the first sheet for error messages and "Time Taken" sheet
excel_file = pd.ExcelFile(uploaded_file, engine='openpyxl')
# Read error messages from first sheet
error_df = pd.read_excel(excel_file, sheet_name=0)
# Read time taken data
df = pd.read_excel(
excel_file,
sheet_name='Time Taken',
dtype=dtype_dict
)
# Convert Failed Scenario column to boolean after reading
df['Failed Scenario'] = df['Failed Scenario'].astype(str).map({'TRUE': True, 'FALSE': False})
# Get error messages from the first sheet
error_messages = error_df[['Scenario Name', 'Error message']].copy()
# Extract date from filename (e.g., RI2211_batch_20250225_27031.xlsx)
filename = uploaded_file.name
date_match = re.search(r'_(\d{8})_', filename)
if date_match:
date_str = date_match.group(1)
file_date = datetime.strptime(date_str, '%Y%m%d').date()
else:
st.warning(f"Could not extract date from filename: {filename}. Using current date.")
file_date = datetime.now().date()
# Extract environment from filename
if any(pattern in filename for pattern in ['_batch_', '_fin_', '_priority_', '_Puppeteer_']):
environment = filename.split('_')[0]
else:
environment = filename.split('.')[0]
# Create result dataframe
result_df = pd.DataFrame({
'Functional area': df['Feature Name'],
'Scenario name': df['Scenario Name'],
'Status': df['Failed Scenario'].map({True: 'FAILED', False: 'PASSED'}),
'Time spent': df['Total Time Taken (ms)'] / 1000 # Convert ms to seconds
})
# Merge error messages with result dataframe
result_df = result_df.merge(error_messages, on='Scenario name', how='left')
# Add environment column
result_df['Environment'] = environment
# Calculate formatted time spent
result_df['Time spent(m:s)'] = pd.to_datetime(result_df['Time spent'], unit='s').dt.strftime('%M:%S')
# Add start datetime (using file date since actual start time isn't available in this sheet)
result_df['Start datetime'] = pd.to_datetime(file_date)
result_df['End datetime'] = result_df['Start datetime'] + pd.to_timedelta(result_df['Time spent'], unit='s')
return result_df
def fill_missing_data(data, column_index, value):
data.iloc[:, column_index] = data.iloc[:, column_index].fillna(value)
return data
# Define a function to convert a string to camel case
def to_camel_case(s):
parts = s.split('_')
return ''.join([part.capitalize() for part in parts])
# Define the function to preprocess a file (CSV or XLSX)
def preprocess_uploaded_file(uploaded_file):
with st.spinner(f'Processing {uploaded_file.name}...'):
# Determine file type based on extension
if uploaded_file.name.lower().endswith('.xlsx'):
data = preprocess_xlsx(uploaded_file)
else:
# Original CSV processing
file_content = uploaded_file.read()
processed_output = preprocess_csv(file_content)
processed_file = io.StringIO(processed_output.getvalue())
data = load_data(processed_file)
data = fill_missing_data(data, 4, 0)
data['Start datetime'] = pd.to_datetime(data['Start datetime'], dayfirst=True, errors='coerce')
data['End datetime'] = pd.to_datetime(data['End datetime'], dayfirst=True, errors='coerce')
data['Time spent'] = (data['End datetime'] - data['Start datetime']).dt.total_seconds()
data['Time spent(m:s)'] = pd.to_datetime(data['Time spent'], unit='s').dt.strftime('%M:%S')
# Extract environment name from filename
filename = uploaded_file.name
environment = filename.split('_Puppeteer')[0]
# Add environment column to the dataframe
data['Environment'] = environment
return data
def add_app_description():
app_title = '<p style="font-family:Roboto, sans-serif; color:#004E7C; font-size: 42px;">DataLink Compare</p>'
st.markdown(app_title, unsafe_allow_html=True)
is_selected = st.sidebar.checkbox('Show App Description', value=False)
if is_selected:
with st.expander('Show App Description'):
st.markdown("Welcome to DataLink Compare. This tool allows you to analyze batch run reports and provides insights into their statuses, processing times, and more. You can also compare two files to identify differences and similarities between them.")
st.markdown("### Instructions:")
st.write("1. Upload your CSV or XLSX file using the file uploader on the sidebar.")
st.write("2. Choose between 'Multi', 'Compare', 'Weekly', and 'Multi-Env Compare' mode using the dropdown on the sidebar.")
st.write("3. In 'Multi' mode, you can upload and analyze multiple files for individual environments.")
st.write("4. In 'Compare' mode, you can upload two files to compare them.")
st.markdown("### Features:")
st.write("- View statistics of passing and failing scenarios.")
st.write("- Filter scenarios by functional area and status.")
st.write("- Calculate average time spent for each functional area.")
st.write("- Display bar graphs showing the number of failed scenarios.")
st.write("- Identify consistent failures, new failures, and changes in passing scenarios.")
# Add the new link here
link_html = '<p style="font-size: 14px;"><a href="https://scenarioswitcher.negadan77.workers.dev/" target="_blank">Open Scenario Processor</a></p>'
st.markdown(link_html, unsafe_allow_html=True)