File size: 6,406 Bytes
a089b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import pandas as pd
import streamlit as st
import csv
import io
import matplotlib.pyplot as plt
import numpy as np

def preprocess_csv(input_bytes):
    text = input_bytes.decode()  # Decode bytes to text
    output = io.StringIO()
    writer = csv.writer(output)

    for row in csv.reader(io.StringIO(text)):  # Read text as csv
        if len(row) > 5:
            row = row[0:5] + [','.join(row[5:])]  # Combine extra fields into one
        writer.writerow(row)

    output.seek(0)  # go to the start of the StringIO object
    return output

def load_data(file):
    column_names = [
        'Functional area',
        'Scenario name',
        'Start datetime',
        'End datetime',
        'Status',
        'Error message'
    ]
    data = pd.read_csv(file, header=None, names=column_names)
    return data

def fill_missing_data(data, column_index, value):
    data.iloc[:, column_index] = data.iloc[:, column_index].fillna(value)
    return data


def single_main(uploaded_file):  
    # st.title('Single CSV Analyzer')

    # uploaded_file = st.file_uploader("Upload CSV file", type="csv")

    if uploaded_file is not None:
        # Process the csv file
        column_names = ["Functional area", "Scenario name", "Start datetime", "End datetime", "Status", "Error message"]

        filet = uploaded_file.read()
        processed_output = preprocess_csv(filet)
        processed_file = io.StringIO(processed_output.getvalue())
        data = load_data(processed_file)

        data = fill_missing_data(data, 4, 0)
        data['Start datetime'] = pd.to_datetime(data['Start datetime'], errors='coerce')
        data['End datetime'] = pd.to_datetime(data['End datetime'], errors='coerce')
        data['Time spent'] = (data['End datetime'] - data['Start datetime']).dt.total_seconds()

        # st.write(data)

       # Display scenarios with status "failed" grouped by functional area
        failed_scenarios = data[data['Status'] == 'FAILED']
        passed_scenarios = data[data['Status'] == 'PASSED']
        # selected_status = st.selectbox("Select a status", ['Failed', 'Passed'])
         # Use radio buttons for selecting status
        selected_status = st.radio("Select a status", ['Failed', 'Passed'])

        # Determine which scenarios to display based on selected status
        if selected_status == 'Failed':
            unique_areas = np.append(failed_scenarios['Functional area'].unique(), "All")
            selected_scenarios = failed_scenarios
            selected_functional_area = st.selectbox("Select a functional area", unique_areas, index=len(unique_areas)-1)        
        elif selected_status == 'Passed':
            unique_areas = np.append(passed_scenarios['Functional area'].unique(), "All")
            selected_scenarios = passed_scenarios
            selected_functional_area = st.selectbox("Select a functional area", unique_areas, index=len(unique_areas)-1)        
        else:  
            selected_scenarios = None
        
        if selected_scenarios is not None:
            # st.write(f"Scenarios with status '{selected_status}' grouped by functional area:")
            st.markdown(f"### Scenarios with status '{selected_status}' grouped by functional area:")
            
            # Handle the "All" option
           # Filter scenarios based on selected functional area
            if selected_functional_area != "All":
                filtered_scenarios = selected_scenarios[selected_scenarios['Functional area'] == selected_functional_area]
            else:
                filtered_scenarios = selected_scenarios

             # Calculate the average time spent for each functional area
            average_time_spent_seconds = filtered_scenarios.groupby('Functional area')['Time spent'].mean().reset_index()

            # Convert average time spent from seconds to minutes and seconds format
            average_time_spent_seconds['Time spent'] = pd.to_datetime(average_time_spent_seconds['Time spent'], unit='s').dt.strftime('%M:%S')

            # Group by functional area and get the start datetime for sorting
            start_datetime_group = filtered_scenarios.groupby('Functional area')['Start datetime'].min().reset_index()

            # Merge average_time_spent_seconds and start_datetime_group
            average_time_spent_seconds = average_time_spent_seconds.merge(start_datetime_group, on='Functional area')

            # Filter scenarios based on selected functional area
            
            grouped_filtered_failed_scenarios = filtered_scenarios.groupby('Functional area')[['Scenario name', 'Error message']].apply(lambda x: x.reset_index(drop=True))
            st.dataframe(grouped_filtered_failed_scenarios)
        
        
         # Display total count of failures
            fail_count = len(failed_scenarios)
            st.write(f"Failing scenarios Count: {fail_count}")
        # Display total count of Passing
            pass_count = len(passed_scenarios)
            st.write(f"Passing scenarios Count: {pass_count}")

            # Sort the average time spent table by start datetime
            average_time_spent_seconds = average_time_spent_seconds.sort_values(by='Start datetime')

           # Display average time spent on each functional area in a table
            st.markdown("### Average Time Spent on Each Functional Area")
            st.dataframe(average_time_spent_seconds)

        # Create and display bar graph of errors by functional area
            st.write("### Bar graph showing number of failures in each functional area:")
            error_counts = failed_scenarios['Functional area'].value_counts()
            plt.figure(figsize=(10, 6))
            plt.bar(error_counts.index, error_counts.values)
            plt.xlabel('Functional Area')
            plt.ylabel('Number of Errors')
            plt.title('Number of Errors by Functional Area')
            plt.xticks(rotation=45, ha='right')
            plt.tight_layout()  # Add this line to adjust layout
            st.pyplot(plt)

        else:
            st.write("### No scenarios with status 'failed' found.")  
    pass

def main():
    st.title('CSV Analyser')
    
    uploaded_file = st.file_uploader("Upload CSV file", type="csv")

    if uploaded_file is not None:
        single_main(uploaded_file)  # Load the main app when the file is uploaded
        
if __name__ == "__main__":
    main()