File size: 7,147 Bytes
cfad59e
 
cd8fcb3
cf4c4b7
3e5674a
cfad59e
 
cd8fcb3
 
 
cf4c4b7
cd8fcb3
cfad59e
 
3e5674a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd8fcb3
cfad59e
cd8fcb3
 
 
cfad59e
cd8fcb3
cfad59e
cd8fcb3
 
 
cfad59e
3e5674a
 
cfad59e
cd8fcb3
 
 
cfad59e
cd8fcb3
 
3e5674a
cd8fcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5674a
 
 
 
cd8fcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5674a
cd8fcb3
 
 
 
 
3e5674a
cd8fcb3
 
3e5674a
cd8fcb3
 
 
 
 
 
 
 
 
 
3e5674a
cd8fcb3
 
 
 
 
 
 
 
 
cf4c4b7
cd8fcb3
 
 
 
 
cf4c4b7
cd8fcb3
 
 
 
 
cfad59e
cd8fcb3
cf4c4b7
cd8fcb3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import pandas as pd
import streamlit as st
import plotly.graph_objects as go
from pre import preprocess_uploaded_file
from datetime import datetime

def generate_weekly_report(uploaded_files):
    if not uploaded_files:
        st.error("No files uploaded. Please upload CSV files for analysis.")
        return

    combined_data = pd.DataFrame()
    for uploaded_file in uploaded_files:
        data = preprocess_uploaded_file(uploaded_file)
        # Extract date and time from filename
        filename_parts = uploaded_file.name.split('_')
        if len(filename_parts) >= 4:
            file_datetime_str = f"{filename_parts[-2]}_{filename_parts[-1].split('.')[0]}"
            try:
                file_datetime = datetime.strptime(file_datetime_str, '%Y%m%d_%H%M%S')
                file_date = file_datetime.date()
            except ValueError:
                st.error(f"Invalid date format in filename: {uploaded_file.name}")
                return
        else:
            st.error(f"Filename does not contain expected date format: {uploaded_file.name}")
            return
        
        data['File Date'] = file_date
        combined_data = pd.concat([combined_data, data], ignore_index=True)

    if combined_data.empty:
        st.error("No data found in the uploaded files. Please check the file contents.")
        return

    failed_data = combined_data[combined_data['Status'] == 'FAILED']

    if failed_data.empty:
        st.warning("No failed scenarios found in the uploaded data.")
        return

    # Use 'File Date' for grouping
    failed_data['Date'] = failed_data['File Date']

    # UI for selecting environments and functional areas
    environments = combined_data['Environment'].unique()
    selected_environments = st.multiselect("Select Environments", options=environments, default=environments)

    all_functional_areas = failed_data['Functional area'].unique()
    area_choice = st.radio("Choose Functional Areas to Display", ['All', 'Select Functional Areas'])

    if area_choice == 'Select Functional Areas':
        selected_functional_areas = st.multiselect("Select Functional Areas", options=all_functional_areas)
        if not selected_functional_areas:
            st.error("Please select at least one functional area.")
            return
    else:
        selected_functional_areas = all_functional_areas

    # Date range selection
    min_date = failed_data['Date'].min()
    max_date = failed_data['Date'].max()
    col1, col2 = st.columns(2)
    with col1:
        start_date = st.date_input("Start Date", min_value=min_date, max_value=max_date, value=min_date)
    with col2:
        end_date = st.date_input("End Date", min_value=min_date, max_value=max_date, value=max_date)

    # Filter data based on selections and date range
    filtered_data = failed_data[
        (failed_data['Environment'].isin(selected_environments)) &
        (failed_data['Date'] >= start_date) &
        (failed_data['Date'] <= end_date)
    ]
    if area_choice == 'Select Functional Areas':
        filtered_data = filtered_data[filtered_data['Functional area'].isin(selected_functional_areas)]

    # Group by Date, Environment, and Functional area
    daily_failures = filtered_data.groupby(['Date', 'Environment', 'Functional area']).size().unstack(level=[1, 2], fill_value=0)

    # Ensure we have a continuous date range
    date_range = pd.date_range(start=start_date, end=end_date)
    daily_failures = daily_failures.reindex(date_range, fill_value=0)

    # Y-axis scaling option
    y_axis_scale = st.radio("Y-axis Scaling", ["Fixed", "Dynamic"])

    # Create an interactive plot using Plotly
    fig = go.Figure()

    for env in selected_environments:
        if env in daily_failures.columns.levels[0]:
            env_data = daily_failures[env]
            if area_choice == 'All':
                total_failures = env_data.sum(axis=1)
                fig.add_trace(go.Scatter(x=daily_failures.index, y=total_failures,
                                         mode='lines+markers', name=f'{env} - All Areas'))
            else:
                for area in selected_functional_areas:
                    if area in env_data.columns:
                        fig.add_trace(go.Scatter(x=daily_failures.index, y=env_data[area],
                                                 mode='lines+markers', name=f'{env} - {area}'))

    fig.update_layout(
        title='Failure Rates Comparison Across Environments Over Time',
        xaxis_title='Date',
        yaxis_title='Number of Failures',
        legend_title='Environment - Functional Area',
        hovermode='closest'
    )

    if y_axis_scale == "Fixed":
        fig.update_yaxes(rangemode="tozero")
    else:
        pass

    # Use st.plotly_chart to display the interactive chart
    st.plotly_chart(fig, use_container_width=True)

    # Add interactivity for scenario details
    st.write("Select a date and environment to see detailed scenario information:")

    selected_date = st.date_input("Select a date", min_value=start_date, max_value=end_date, value=start_date)
    selected_env = st.selectbox("Select an environment", options=selected_environments)

    if selected_date and selected_env:
        st.write(f"### Detailed Scenarios for {selected_date} - {selected_env}")

        day_scenarios = filtered_data[(filtered_data['Date'] == selected_date) & 
                                      (filtered_data['Environment'] == selected_env)]

        if not day_scenarios.empty:
            st.dataframe(day_scenarios[['Functional area', 'Scenario name', 'Error message', 'Time spent(m:s)']])
        else:
            st.write("No failing scenarios found for the selected date and environment.")

    # Summary Statistics
    st.write("### Summary Statistics")
    for env in selected_environments:
        env_data = filtered_data[filtered_data['Environment'] == env]
        total_failures = len(env_data)

        if len(daily_failures) > 0:
            avg_daily_failures = total_failures / len(daily_failures)
            if env in daily_failures.columns.levels[0]:
                max_daily_failures = daily_failures[env].sum(axis=1).max()
                min_daily_failures = daily_failures[env].sum(axis=1).min()
            else:
                max_daily_failures = min_daily_failures = 0
        else:
            avg_daily_failures = max_daily_failures = min_daily_failures = 0

        st.write(f"**{env}**:")
        st.write(f"  - Total Failures: {total_failures}")
        st.write(f"  - Average Daily Failures: {avg_daily_failures:.2f}")
        st.write(f"  - Max Daily Failures: {max_daily_failures}")
        st.write(f"  - Min Daily Failures: {min_daily_failures}")

        if area_choice == 'Select Functional Areas':
            st.write("\n  **Failures by Functional Area:**")
            for area in selected_functional_areas:
                area_total = len(env_data[env_data['Functional area'] == area])
                st.write(f"    - {area}: {area_total}")

        st.write("---")

    # Display raw data for verification
    if st.checkbox("Show Raw Data"):
        st.write(daily_failures)