File size: 28,300 Bytes
7f6e787
 
 
 
 
69a44c9
 
 
 
 
 
 
 
 
 
 
 
 
471b760
611c02e
 
 
69a44c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611c02e
69a44c9
 
 
 
 
 
611c02e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a44c9
611c02e
 
 
69a44c9
611c02e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a44c9
611c02e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a44c9
 
 
611c02e
69a44c9
 
 
 
 
 
 
7f6e787
 
 
 
 
 
d2ed71e
 
 
 
 
7f6e787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2ed71e
 
 
 
7f6e787
 
 
7a2556d
 
7f6e787
 
7a2556d
 
 
 
 
 
 
 
 
7f6e787
7a2556d
 
 
 
 
7f6e787
69a44c9
 
 
 
 
 
 
 
 
 
d2ed71e
 
69a44c9
d2ed71e
69a44c9
 
7f6e787
69a44c9
 
 
 
 
 
7f6e787
 
e7b03fa
69a44c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b03fa
69a44c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
611c02e
 
 
7a2556d
69a44c9
7f6e787
 
 
 
 
d2ed71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f6e787
d2ed71e
 
 
 
7f6e787
 
69a44c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f6e787
69a44c9
 
 
 
 
 
 
 
 
 
 
09d0a8d
 
7f6e787
69a44c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c0b810
69a44c9
 
 
 
 
 
d2ed71e
69a44c9
 
 
 
 
 
 
 
 
 
 
d2ed71e
69a44c9
 
 
 
d2ed71e
69a44c9
 
 
 
 
 
 
 
 
7f6e787
69a44c9
 
 
7f6e787
69a44c9
 
7f6e787
69a44c9
 
 
 
 
 
7f6e787
3ff5801
7f6e787
69a44c9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import pandas as pd
import streamlit as st
import matplotlib.pyplot as plt
import numpy as np
from pre import preprocess_uploaded_file
from jira_integration import (
    render_jira_login, 
    get_current_sprint, 
    get_regression_board,
    get_sprint_issues,
    calculate_points,
    create_regression_task,
    generate_task_content,
    calculate_story_points,
    get_project_metadata,
    get_field_dependencies,
    get_dependent_field_value,
    get_boards,
    get_functional_area_values,
    map_functional_area,
    get_customer_field_values,
    map_customer_value
)
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go
import os
from dotenv import load_dotenv
import json
import logging
load_dotenv()
JIRA_SERVER = os.getenv("JIRA_SERVER")
# Initialize session state variables
if 'filtered_scenarios_df' not in st.session_state:
    st.session_state.filtered_scenarios_df = None
if 'task_content' not in st.session_state:
    st.session_state.task_content = None
if 'total_story_points' not in st.session_state:
    st.session_state.total_story_points = 0
if 'completed_points' not in st.session_state:
    st.session_state.completed_points = 0
if 'current_page' not in st.session_state:
    st.session_state.current_page = "analysis"
if 'task_df' not in st.session_state:
    st.session_state.task_df = None
if 'task_environment' not in st.session_state:
    st.session_state.task_environment = None
if 'last_task_key' not in st.session_state:
    st.session_state.last_task_key = None
if 'last_task_url' not in st.session_state:
    st.session_state.last_task_url = None
if 'show_success' not in st.session_state:
    st.session_state.show_success = False

# Get logger from jira_integration
logger = logging.getLogger("multiple")

# Function to capture button clicks with manual callback
def handle_task_button_click(summary, description, formatted_env, filtered_df):
    logger.info("=== Task button clicked - Starting debug logging ===")
    try:
        logger.info(f"Summary: {summary}")
        logger.info(f"Description length: {len(description)}")
        logger.info(f"Environment: {formatted_env}")
        logger.info(f"DataFrame shape: {filtered_df.shape}")
        
        # Get metadata for field values
        metadata = get_project_metadata("RS")
        if not metadata:
            logger.error("Could not get project metadata")
            return False
            
        # Check if this is an ILR environment
        is_ilr_environment = any(env in formatted_env.upper() if formatted_env else False 
                               for env in ["LEGAL_WISE_NR", "LIFE_WISE_NR", "SCORPION_NR", "TALKSURE"])
        
        # Extract functional area from filtered scenarios
        functional_areas = []
        if "Functional area" in filtered_df.columns:
            functional_areas = filtered_df["Functional area"].unique().tolist()
            logger.info(f"Extracted functional areas: {functional_areas}")
        
        # Map functional area using metadata
        functional_area_parent = "ILR" if is_ilr_environment else "R&I"
        functional_area_child = None
        
        # Set child value based on environment for ILR
        if is_ilr_environment:
            if "LEGAL_WISE_NR" in formatted_env.upper():
                functional_area_child = "LEZA - LegalWise"
            elif "LIFE_WISE_NR" in formatted_env.upper():
                functional_area_child = "LEZA - LifeWise"
            elif "SCORPION_NR" in formatted_env.upper():
                functional_area_child = "LEZA - Scorpion"
            elif "TALKSURE" in formatted_env.upper():
                functional_area_child = "Talksure"
        else:
            # Use standard R&I mapping
            _, functional_area_child = map_functional_area(
                functional_areas[0] if functional_areas else "Data Exchange",
                metadata
            )
        
        logger.info(f"Mapped functional area to parent: {functional_area_parent}, child: {functional_area_child}")
        
        # Get customer field values and map environment
        customer_values = get_customer_field_values(metadata)
        parent_value, child_value = map_customer_value(formatted_env, customer_values)
        logger.info(f"Mapped customer values - Parent: {parent_value}, Child: {child_value}")
        
        # Calculate story points based on number of scenarios
        story_points = calculate_story_points(len(filtered_df))
        logger.info(f"Calculated story points: {story_points}")
        
        # Prepare issue dictionary with all required fields
        issue_dict = {
            "project": {"key": "RS"},
            "summary": summary,
            "description": description,
            "issuetype": {"name": "Story"},
            "components": [{"name": "Maintenance (Regression)"}],
            "customfield_10427": {
                "value": parent_value,
                "child": {
                    "value": child_value
                }
            },
            "customfield_12730": {"value": "Non-Business Critical"},  # Regression Type field
            "customfield_13430": {"value": str(len(filtered_df))},  # Number of Scenarios
            "customfield_13100": {
                "value": functional_area_parent,
                "child": {
                    "value": functional_area_child
                }
            },
            "assignee": {"name": st.session_state.jira_username},
            "customfield_10002": story_points  # Story Points field
        }
        
        # Log the complete issue dictionary
        logger.info("=== Task Creation Values ===")
        logger.info(f"Complete issue dictionary: {json.dumps(issue_dict, indent=2)}")
        
        # Create the actual Jira task
        task_key = create_regression_task(
            summary=summary, 
            description=description, 
            environment=formatted_env, 
            filtered_scenarios_df=filtered_df,
            project_key="RS"
        )
        
        if task_key:
            # Set session state variables for success message
            st.session_state.last_task_key = task_key
            st.session_state.last_task_url = f"{JIRA_SERVER}/browse/{task_key}"
            st.session_state.show_success = True
            logger.info(f"Successfully created task: {task_key}")
            return True
        else:
            st.error("❌ Failed to create Jira task. Check logs for details.")
            return False
                
    except Exception as e:
        logger.exception(f"Error in handle_task_button_click: {str(e)}")
        st.error(f"❌ Error preparing task: {str(e)}")
        import traceback
        error_trace = traceback.format_exc()
        logger.error(f"Full traceback: {error_trace}")
        st.error(error_trace)
        return False
    finally:
        logger.info("=== Ending handle_task_button_click function ===")

# Define the function to perform analysis
def perform_analysis(uploaded_dataframes):
    # Concatenate all dataframes into a single dataframe
    combined_data = pd.concat(uploaded_dataframes, ignore_index=True)

    # Display debugging information
    # st.write("Combined data shape:", combined_data.shape)
    # st.write("Unique functional areas in combined data:", combined_data['Functional area'].nunique())
    # st.write("Sample of combined data:", combined_data.head())

    # Display scenarios with status "failed" grouped by functional area
    failed_scenarios = combined_data[combined_data['Status'] == 'FAILED']
    passed_scenarios = combined_data[combined_data['Status'] == 'PASSED']
    # Display total count of failures
    fail_count = len(failed_scenarios)
    st.markdown(f"Failing scenarios Count: {fail_count}")
    # Display total count of Passing
    pass_count = len(passed_scenarios)
    st.markdown(f"Passing scenarios Count: {pass_count}")
     # Use radio buttons for selecting status
    selected_status = st.radio("Select a status", ['Failed', 'Passed'])
    # Determine which scenarios to display based on selected status
    if selected_status == 'Failed':
        unique_areas = np.append(failed_scenarios['Functional area'].unique(), "All")
        selected_scenarios = failed_scenarios
    elif selected_status == 'Passed':
        unique_areas = np.append(passed_scenarios['Functional area'].unique(), "All")
        selected_scenarios = passed_scenarios
    else:  
        selected_scenarios = None
    
    if selected_scenarios is not None:
        st.markdown(f"### Scenarios with status '{selected_status}' grouped by functional area:")
        
        # Select a range of functional areas to filter scenarios
        selected_functional_areas = st.multiselect("Select functional areas", unique_areas, ["All"])
       
        if "All" in selected_functional_areas:
            filtered_scenarios = selected_scenarios
        else:
            filtered_scenarios = selected_scenarios[selected_scenarios['Functional area'].isin(selected_functional_areas)]
        
        if not selected_functional_areas:  # Check if the list is empty
            st.error("Please select at least one functional area.")
        else:
            # Display count of filtered scenarios
            st.write(f"Number of filtered scenarios: {len(filtered_scenarios)}")
            
            # Calculate the average time spent for each functional area
            average_time_spent_seconds = filtered_scenarios.groupby('Functional area')['Time spent'].mean().reset_index()
            # Convert average time spent from seconds to minutes and seconds format
            average_time_spent_seconds['Time spent'] = pd.to_datetime(average_time_spent_seconds['Time spent'], unit='s').dt.strftime('%M:%S')
            
    
            # Group by functional area and get the start datetime for sorting
            start_datetime_group = filtered_scenarios.groupby('Functional area')['Start datetime'].min().reset_index()
            end_datetime_group = filtered_scenarios.groupby('Functional area')['End datetime'].max().reset_index()
           
            # Calculate the total time spent for each functional area (difference between end and start datetime)
            total_time_spent_seconds = (end_datetime_group['End datetime'] - start_datetime_group['Start datetime']).dt.total_seconds()

            # Convert total time spent from seconds to minutes and seconds format
            total_time_spent_seconds = pd.to_datetime(total_time_spent_seconds, unit='s').dt.strftime('%M:%S')

           # Merge the average_time_spent_seconds with start_datetime_group and end_datetime_group
            average_time_spent_seconds = average_time_spent_seconds.merge(start_datetime_group, on='Functional area')
            average_time_spent_seconds = average_time_spent_seconds.merge(end_datetime_group, on='Functional area')   
            average_time_spent_seconds['Total Time Spent'] = total_time_spent_seconds

            
             # Filter scenarios based on selected functional area
            if selected_status == 'Failed':
                # Define columns in the exact order they appear in the table
                columns_to_keep = [
                    'Environment',
                    'Functional area',
                    'Scenario Name',
                    'Error Message',
                    'Failed Step',
                    'Time spent(m:s)',
                    'Start datetime'
                ]
                # Check if Failed Step column exists
                if 'Failed Step' in filtered_scenarios.columns:
                    grouped_filtered_scenarios = filtered_scenarios[columns_to_keep].copy()
                else:
                    columns_to_keep.remove('Failed Step')
                    grouped_filtered_scenarios = filtered_scenarios[columns_to_keep].copy()
            elif selected_status == 'Passed':
                grouped_filtered_scenarios = filtered_scenarios[[
                    'Environment',
                    'Functional area',
                    'Scenario Name',
                    'Time spent(m:s)'
                ]].copy()
            else:  
                grouped_filtered_scenarios = None
            
            # Only proceed if we have data
            if grouped_filtered_scenarios is not None:
                # Reset the index to start from 1
                grouped_filtered_scenarios.index = range(1, len(grouped_filtered_scenarios) + 1)
                st.dataframe(grouped_filtered_scenarios)

            # Show task creation button if:
            # 1. User is authenticated
            # 2. Status is Failed
            # 3. Exactly one functional area is selected (not "All")
            if ('jira_client' in st.session_state and 
                st.session_state.jira_client and 
                selected_status == 'Failed' and 
                len(selected_functional_areas) == 1 and 
                "All" not in selected_functional_areas):
                
                # If we have a recently created task, show the success message first
                if st.session_state.show_success and st.session_state.last_task_key:
                    st.success("✅ Task created successfully!")
                    
                    # Display task link in a more prominent way
                    st.markdown(
                        f"""
                        <div style='padding: 10px; border-radius: 5px; border: 1px solid #90EE90; margin: 10px 0;'>
                            <h3 style='margin: 0; color: #90EE90;'>Task Details</h3>
                            <p style='margin: 10px 0;'>Task Key: {st.session_state.last_task_key}</p>
                            <a href='{st.session_state.last_task_url}' target='_blank' 
                               style='background-color: #90EE90; color: black; padding: 5px 10px; 
                                      border-radius: 3px; text-decoration: none; display: inline-block;'>
                                View Task in Jira
                            </a>
                        </div>
                        """,
                        unsafe_allow_html=True
                    )
                    
                    # Add a button to create another task
                    col1, col2, col3 = st.columns([1, 2, 1])
                    with col2:
                        if st.button("Create Another Task", key="create_another", use_container_width=True):
                            # Clear all task-related state
                            st.session_state.task_content = None
                            st.session_state.last_task_key = None
                            st.session_state.last_task_url = None
                            st.session_state.show_success = False
                            st.rerun()
                else:
                    environment = filtered_scenarios['Environment'].iloc[0]
                    # Create columns for compact layout
                    col1, col2, col3 = st.columns([1, 2, 1])
                    with col2:
                        if st.button("📝 Log Jira Task", use_container_width=True):
                            # Use the properly structured DataFrame for task creation
                            task_df = grouped_filtered_scenarios.copy()
                            expected_columns = [
                                'Environment',
                                'Functional area',
                                'Scenario Name',
                                'Error Message',
                                'Failed Step',
                                'Time spent(m:s)',
                                'Start datetime'
                            ]
                            missing_columns = [col for col in expected_columns if col not in task_df.columns]
                            if missing_columns:
                                st.error(f"Missing required columns: {', '.join(missing_columns)}")
                                st.error("Please ensure your data includes all required columns")
                                return
                            
                            # Generate task content
                            summary, description = generate_task_content(task_df)
                            if summary and description:
                                # Call the task creation function
                                success = handle_task_button_click(summary, description, environment, task_df)
                                if success:
                                    st.rerun()  # Refresh the page to show success message

            # Check if selected_status is 'Failed' and show bar graph
            if selected_status != 'Passed':
                # Create and display bar graph of errors by functional area
                st.write(f"### Bar graph showing number of '{selected_status}' scenarios in each functional area:")
                error_counts = grouped_filtered_scenarios['Functional area'].value_counts()
                
                # Only create the graph if there are errors to display
                if not error_counts.empty:
                    plt.figure(figsize=(12, 10))
                    bars = plt.bar(error_counts.index, error_counts.values)
                    plt.xlabel('Functional Area')
                    plt.ylabel('Number of Failures')
                    plt.title(f"Number of '{selected_status}' scenarios by Functional Area")
                    plt.xticks(rotation=45, ha='right', fontsize=10)
                    # Set y-axis limits and ticks for consistent interval of 1
                    y_max = max(error_counts.values) + 1
                    plt.ylim(0, y_max)
                    plt.yticks(range(0, y_max, 1), fontsize=10)
                    
                    # Display individual numbers on y-axis
                    for bar in bars:
                        height = bar.get_height()
                        plt.text(bar.get_x() + bar.get_width() / 2, height, str(int(height)),
                                ha='center', va='bottom')  # Reduce font size of individual numbers

                    plt.tight_layout()  # Add this line to adjust layout
                    st.pyplot(plt)
                else:
                    st.info(f"No '{selected_status}' scenarios found to display in the graph.")
    pass

def display_story_points_stats(force_refresh=False):
    """Display story points statistics from current sprint"""
    if not st.session_state.jira_client:
        return
        
    try:
        with st.spinner("Fetching sprint data..."):
            # Get regression board
            board = get_regression_board("RS")
            if not board:
                return
            
            # Get current sprint
            sprint = get_current_sprint(board['id'])
            if not sprint:
                return
            
            # Get sprint issues
            issues = get_sprint_issues(board['id'], sprint.id, board['estimation_field'])
            if not issues:
                return
            
            # Calculate points
            issues_data, total_points, completed_points, in_progress_points = calculate_points(issues, board['estimation_field'])
            
            # Update session state
            st.session_state.total_story_points = total_points
            st.session_state.completed_points = completed_points
            
            # Create compact metrics display
            metrics_container = st.container()
            with metrics_container:
                # Show sprint info
                st.info(f"Current Sprint: {sprint.name}")
                
                # Show metrics in a compact format
                cols = st.columns(4)
                with cols[0]:
                    st.metric("Total", f"{total_points:.1f}")
                with cols[1]:
                    st.metric("Done", f"{completed_points:.1f}")
                with cols[2]:
                    st.metric("In Progress", f"{in_progress_points:.1f}")
                with cols[3]:
                    completion_rate = (completed_points / total_points * 100) if total_points > 0 else 0
                    st.metric("Complete", f"{completion_rate:.1f}%")
                
                # Show progress bar
                progress = completed_points / total_points if total_points > 0 else 0
                st.progress(progress)
                
                # Add refresh button
                if st.button("🔄 Refresh", key="refresh_stats", use_container_width=True):
                    st.session_state.last_refresh = datetime.now()
                    return
    except Exception as e:
        st.error(f"Error updating story points: {str(e)}")

def show_task_creation_section(filtered_df, environment):
    """Display the task creation section with detailed functional area mapping information."""
    
    if "Functional area" in filtered_df.columns and len(filtered_df) > 0:
        functional_areas = filtered_df["Functional area"].unique().tolist()
        functional_area = functional_areas[0] if functional_areas else None
        logger.debug(f"Found functional areas: {functional_areas}")
        
        # Get project metadata to access allowed values
        metadata = get_project_metadata("RS")
        if metadata:
            # Create expandable section for field structure
            with st.expander("Functional Area Field Structure", expanded=False):
                func_field = metadata['all_fields'].get('customfield_13100', {})
                if func_field and 'allowedValues' in func_field:
                    st.write("Available parent-child mappings:")
                    for parent in func_field['allowedValues']:
                        if isinstance(parent, dict):
                            parent_value = parent.get('value', 'Unknown')
                            st.markdown(f"**Parent: {parent_value}**")
                            if 'cascadingOptions' in parent:
                                child_values = [child.get('value') for child in parent['cascadingOptions'] if child.get('value')]
                                st.write("Child options:")
                                for child in sorted(child_values):
                                    st.write(f"  • {child}")
                                st.write("")
            
            # Display current functional area and mapping attempt
            st.subheader("Functional Area Mapping")
            col1, col2 = st.columns(2)
            
            with col1:
                st.markdown("**Input Functional Area:**")
                st.info(functional_area)
                
                st.markdown("**Split Parts:**")
                parts = functional_area.split(' - ')
                for i, part in enumerate(parts, 1):
                    st.write(f"{i}. {part}")
            
            with col2:
                # Try to map the functional area
                parent, child = map_functional_area(functional_area, metadata)
                st.markdown("**Mapped Values:**")
                st.success(f"Parent: {parent}")
                st.success(f"Child: {child}")
                
                # Show normalized form
                st.markdown("**Normalized Form:**")
                norm_area = functional_area.lower().replace(' ', '-')
                st.info(norm_area)
            
            # Add warning if using default mapping
            if parent == "R&I" and child == "Data Exchange" and functional_area.lower() != "data exchange":
                st.warning("""
                ⚠️ Using default mapping (R&I/Data Exchange). This might not be the best match.
                Please check the 'Functional Area Field Structure' above for available values.
                """)
    else:
        logger.warning("No functional area found in data")
        st.warning("No functional area information found in the data")
    
    # Create task button
    if st.button("Create Task", key="create_task_button"):
        handle_task_button_click(filtered_df, environment)

def multiple_main():
    # Initialize session state variables
    if 'current_page' not in st.session_state:
        st.session_state.current_page = "upload"
    if 'task_df' not in st.session_state:
        st.session_state.task_df = None
    if 'selected_files' not in st.session_state:
        st.session_state.selected_files = []
    if 'uploaded_files' not in st.session_state:
        st.session_state.uploaded_files = []
    if 'filtered_scenarios_df' not in st.session_state:
        st.session_state.filtered_scenarios_df = None
    if 'show_success' not in st.session_state:
        st.session_state.show_success = False

    if 'jira_server' not in st.session_state:
        st.session_state.jira_server = JIRA_SERVER
    # Initialize session state for sprint data if not exists
    if 'sprint_data_initialized' not in st.session_state:
        st.session_state.sprint_data_initialized = False
    
    # Add Jira login to sidebar (only once)
    with st.sidebar:
        st.subheader("Jira Integration (Optional)")
        
        # Only render login if not already authenticated
        if 'is_authenticated' not in st.session_state:
            st.session_state.is_authenticated = render_jira_login()
        else:
            # Just display the status without re-rendering the login
            if st.session_state.is_authenticated:
                st.success("Connected to Jira")
            else:
                # Allow re-login if not authenticated
                st.session_state.is_authenticated = render_jira_login()
        
        # Only show story points in sidebar if authenticated
        if st.session_state.is_authenticated and st.session_state.jira_client:
            st.markdown("---")
            st.subheader("Sprint Progress")
            
            # Only fetch sprint data once or when refresh is clicked
            if not st.session_state.sprint_data_initialized:
                display_story_points_stats(force_refresh=True)
                st.session_state.sprint_data_initialized = True
            else:
                display_story_points_stats(force_refresh=False)
    
    
    
    # Initialize session state for uploaded data
    if 'uploaded_data' not in st.session_state:
        st.session_state.uploaded_data = None
    if 'last_refresh' not in st.session_state:
        st.session_state.last_refresh = None
    
    # Check if we're in task creation mode
    if st.session_state.current_page == "create_task" and st.session_state.task_df is not None:
        # Add a back button
        if st.button("⬅️ Back to Analysis"):
            st.session_state.current_page = "analysis"
            st.rerun()
            return
        
        # Show task creation section
        show_task_creation_section(st.session_state.task_df, st.session_state.task_environment)
        return
    
    # Main analysis page
    uploaded_files = st.file_uploader("Upload CSV or Excel files", 
                                    type=['csv', 'xlsx'], 
                                    accept_multiple_files=True)
    
    # Process uploaded files and store in session state
    if uploaded_files:
        all_data = []
        for file in uploaded_files:
            try:
                df = preprocess_uploaded_file(file)
                all_data.append(df)
            except Exception as e:
                st.error(f"Error processing {file.name}: {str(e)}")
        
        if all_data:
            # Store the processed data in session state
            st.session_state.uploaded_data = all_data
    
    # Use data from session state for analysis
    if st.session_state.uploaded_data:
        # Perform analysis for uploaded data
        perform_analysis(st.session_state.uploaded_data)
        
        # Get combined data for Jira integration
        combined_df = pd.concat(st.session_state.uploaded_data, ignore_index=True)
        
          
    else:
        st.write("Please upload at least one file.")

if __name__ == "__main__":
    st.set_page_config(layout="wide")
    multiple_main()