import os import getpass import requests import sentence_transformers import streamlit as st VECTOR_DB ="bbf2ef09-875b-4737-a793-499409a108b0" IBM_API_KEY = os.getenv("IBM_API_KEY") IBM_PROJECT_ID = "a0659778-f4ce-4da1-ba01-43b4f43a026f" IBM_URL_TOKEN = "https://iam.cloud.ibm.com/identity/token" IBM_URL_CHAT = "https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-10-25" if "messages" not in st.session_state: st.session_state.messages = [] if "user_input" not in st.session_state: st.session_state.user_input = "" # Load the banner image from the same directory #banner_image = Image.open("banner.jpg") #st.image("banner.jpg", use_container_width=True) ############################################## ## ## IBM API ## ############################################## def IBM_token(): # Define the headers headers = { "Content-Type": "application/x-www-form-urlencoded" } # Define the data payload data = { "grant_type": "urn:ibm:params:oauth:grant-type:apikey", "apikey": IBM_API_KEY } # Make the POST request response = requests.post(IBM_URL_TOKEN, headers=headers, data=data) st.session_state.IBM_ACCESS_TOKEN = response.json().get("access_token", "") def IBM_chat (messages): body = { "model_id": "ibm/granite-3-8b-instruct", "project_id": IBM_PROJECT_ID, "messages": messages, "max_tokens": 10000, "temperature": 0.3, "time_limit": 20000 } headers = { "Accept": "application/json", "Content-Type": "application/json", "Authorization": "Bearer " + st.session_state.IBM_ACCESS_TOKEN } response = requests.post( IBM_URL_CHAT, headers=headers, json=body ) if response.status_code != 200: raise Exception("Non-200 response: " + str(response.text)) response = response.json() return response["choices"][0]["message"]["content"] def get_credentials(): return { "url" : "https://us-south.ml.cloud.ibm.com", "apikey" : os.getenv("IBM_API_KEY") } from ibm_watsonx_ai.foundation_models import ModelInference from ibm_watsonx_ai.client import APIClient if "client" not in st.session_state: with st.spinner("⏳ Waking the wizard ..."): IBM_token() wml_credentials = get_credentials() project_id = os.getenv("IBM_PROJECT_ID") st.session_state.client = APIClient(credentials=wml_credentials, project_id=project_id) vector_index_id = VECTOR_DB vector_index_details = st.session_state.client.data_assets.get_details(vector_index_id) vector_index_properties = vector_index_details["entity"]["vector_index"] top_n = 20 if vector_index_properties["settings"].get("rerank") else int(vector_index_properties["settings"]["top_k"]) def rerank( client, documents, query, top_n ): from ibm_watsonx_ai.foundation_models import Rerank reranker = Rerank( model_id="cross-encoder/ms-marco-minilm-l-12-v2", api_client=client, params={ "return_options": { "top_n": top_n }, "truncate_input_tokens": 512 } ) reranked_results = reranker.generate(query=query, inputs=documents)["results"] new_documents = [] for result in reranked_results: result_index = result["index"] new_documents.append(documents[result_index]) return new_documents from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2') import subprocess import gzip import json import chromadb import random import string def hydrate_chromadb(): data = st.session_state.client.data_assets.get_content(vector_index_id) content = gzip.decompress(data) stringified_vectors = str(content, "utf-8") vectors = json.loads(stringified_vectors) #chroma_client = chromadb.Client() #chroma_client = chromadb.InMemoryClient() chroma_client = chromadb.PersistentClient(path="./chroma_db") # make sure collection is empty if it already existed collection_name = "my_collection" try: collection = chroma_client.delete_collection(name=collection_name) except: print("Collection didn't exist - nothing to do.") collection = chroma_client.create_collection(name=collection_name) vector_embeddings = [] vector_documents = [] vector_metadatas = [] vector_ids = [] for vector in vectors: vector_embeddings.append(vector["embedding"]) vector_documents.append(vector["content"]) metadata = vector["metadata"] lines = metadata["loc"]["lines"] clean_metadata = {} clean_metadata["asset_id"] = metadata["asset_id"] clean_metadata["asset_name"] = metadata["asset_name"] clean_metadata["url"] = metadata["url"] clean_metadata["from"] = lines["from"] clean_metadata["to"] = lines["to"] vector_metadatas.append(clean_metadata) asset_id = vector["metadata"]["asset_id"] random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10)) id = "{}:{}-{}-{}".format(asset_id, lines["from"], lines["to"], random_string) vector_ids.append(id) collection.add( embeddings=vector_embeddings, documents=vector_documents, metadatas=vector_metadatas, ids=vector_ids ) return collection if "chroma_collection" not in st.session_state: with st.spinner("⏳ Dusting off the scroll books ..."): st.session_state.chroma_collection = hydrate_chromadb() def proximity_search( question ): query_vectors = emb.embed_query(question) query_result = st.session_state.chroma_collection.query( query_embeddings=query_vectors, n_results=top_n, include=["documents", "metadatas", "distances"] ) documents = list(reversed(query_result["documents"][0])) if vector_index_properties["settings"].get("rerank"): documents = rerank(st.session_state.client, documents, question, vector_index_properties["settings"]["top_k"]) return "\n".join(documents) # Streamlit UI st.title("🔍 Policy Scroll") st.subheader("AI-Powered Project Matching") st.write("Explore the Lab Lab Library to find relevant past projects that align with your policy or new initiative.") # Suggested search queries as buttons col1, col2 = st.columns(2) with col1: if st.button("Solarpunk projects to connect with"): st.session_state["user_input"] = "Solarpunk projects to connect with" with col2: if st.button("How to implement DEI?"): st.session_state["user_input"] = "How to implement DEI?" # User input in Streamlit user_input = st.chat_input("Describe your policy or project to find relevant Lab Lab projects...") if st.session_state["user_input"]: # Display user message #st.chat_message("user").markdown(st.session_state["user_input"]) grounding = proximity_search(st.session_state["user_input"]) # add the submissions as context (only in prompt, not in history) prompt = st.session_state["user_input"] + ". For a project share the image as markdown and mention the url as well. The context for the question: " + grounding; messages = st.session_state.messages.copy() messages.append({"role": "user", "content": prompt}) st.session_state.messages.append({"role": "user", "content": st.session_state["user_input"]}) # Get response from IBM with st.spinner("Thinking..."): assistant_reply = IBM_chat(messages) # Display assistant message st.chat_message("assistant").markdown(assistant_reply) st.session_state.messages.append({"role": "assistant", "content": assistant_reply})