Spaces:
Running
Running
import os | |
import requests | |
import sentence_transformers | |
import streamlit as st | |
VECTOR_DB ="bbf2ef09-875b-4737-a793-499409a108b0" | |
JSON_DB = "f49e274a-b5c3-4573-81a2-32df8f96e97b" | |
IBM_API_KEY = os.getenv("IBM_API_KEY") | |
IBM_URL_TOKEN = "https://iam.cloud.ibm.com/identity/token" | |
IBM_URL_CHAT = "https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-10-25" | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "query" not in st.session_state: | |
st.session_state.query = "" | |
if "extended_query" not in st.session_state: | |
st.session_state.extended_query = "" | |
############################################## | |
## | |
## IBM API | |
## | |
############################################## | |
def IBM_token(): | |
# Define the headers | |
headers = { | |
"Content-Type": "application/x-www-form-urlencoded" | |
} | |
# Define the data payload | |
data = { | |
"grant_type": "urn:ibm:params:oauth:grant-type:apikey", | |
"apikey": IBM_API_KEY | |
} | |
# Make the POST request | |
response = requests.post(IBM_URL_TOKEN, headers=headers, data=data) | |
st.session_state.IBM_ACCESS_TOKEN = response.json().get("access_token", "") | |
def IBM_chat (messages, temperature = 0.7): | |
body = { | |
"model_id": "ibm/granite-3-8b-instruct", | |
"project_id": os.getenv("IBM_PROJECT_ID"), | |
"messages": messages, | |
"max_tokens": 10000, | |
"temperature": temperature, | |
"time_limit": 40000 | |
} | |
headers = { | |
"Accept": "application/json", | |
"Content-Type": "application/json", | |
"Authorization": "Bearer " + st.session_state.IBM_ACCESS_TOKEN | |
} | |
response = requests.post( | |
IBM_URL_CHAT, | |
headers=headers, | |
json=body | |
) | |
if response.status_code != 200: | |
raise Exception("Non-200 response: " + str(response.text)) | |
response = response.json() | |
return response["choices"][0]["message"]["content"] | |
def IBM_query (prompt, temperature = 0.7): | |
messages = [{"role": "user", "content": prompt}] | |
return IBM_chat(messages, temperature) | |
def get_credentials(): | |
return { | |
"url" : "https://us-south.ml.cloud.ibm.com", | |
"apikey" : os.getenv("IBM_API_KEY") | |
} | |
############################################## | |
## | |
## Vector DB | |
## | |
############################################## | |
from ibm_watsonx_ai.client import APIClient | |
from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings | |
def rerank( client, documents, query, top_n ): | |
from ibm_watsonx_ai.foundation_models import Rerank | |
reranker = Rerank( | |
model_id="cross-encoder/ms-marco-minilm-l-12-v2", | |
api_client=client, | |
params={ | |
"return_options": { | |
"top_n": top_n | |
}, | |
"truncate_input_tokens": 512 | |
} | |
) | |
reranked_results = reranker.generate(query=query, inputs=documents)["results"] | |
new_documents = [] | |
for result in reranked_results: | |
result_index = result["index"] | |
new_documents.append(documents[result_index]) | |
return new_documents | |
import subprocess | |
import gzip | |
import json | |
import chromadb | |
import random | |
import string | |
def hydrate_chromadb(): | |
#data = st.session_state.client.data_assets.get_content(JSON_DB) | |
#stringified_vectors = str(content, "utf-8") | |
with open("lablab - json.txt", "r", encoding="utf-8") as f: | |
#with open("lablab.gzip", "rb") as f: | |
gz = f.read() | |
#content = gzip.decompress(gz) | |
#stringified_vectors = str(content, "utf-8") | |
vectors = json.loads(gz) | |
chroma_client = chromadb.PersistentClient(path="./chroma_db") | |
# make sure collection is empty if it already existed | |
collection_name = "my_collection" | |
try: | |
collection = chroma_client.delete_collection(name=collection_name) | |
except: | |
print("Collection didn't exist - nothing to do.") | |
collection = chroma_client.create_collection(name=collection_name) | |
vector_embeddings = [] | |
vector_documents = [] | |
vector_metadatas = [] | |
vector_ids = [] | |
for vector in vectors: | |
vector_embeddings.append(vector["embedding"]) | |
vector_documents.append(vector["content"] | |
) | |
#metadata = vector["metadata"] | |
#lines = metadata["loc"]["lines"] | |
clean_metadata = {} | |
clean_metadata["source"] = "Lablab website" | |
#clean_metadata["asset_id"] = metadata["asset_id"] | |
#clean_metadata["asset_name"] = metadata["asset_name"] | |
#clean_metadata["url"] = metadata["url"] | |
#clean_metadata["from"] = lines["from"] | |
#clean_metadata["to"] = lines["to"] | |
vector_metadatas.append(clean_metadata) | |
#asset_id = vector["metadata"]["asset_id"] | |
random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10)) | |
#id = "{}:{}-{}-{}".format(asset_id, lines["from"], lines["to"], random_string) | |
vector_ids.append(random_string) | |
collection.add( | |
embeddings=vector_embeddings, | |
documents=vector_documents, | |
metadatas=vector_metadatas, | |
ids=vector_ids | |
) | |
return collection | |
def proximity_search( question ): | |
query_vectors = st.session_state.emb.embed_query(question) | |
query_result = st.session_state.chroma_collection.query( | |
query_embeddings=query_vectors, | |
n_results=st.session_state.top_n, | |
include=["documents", "metadatas", "distances"] | |
) | |
documents = list(reversed(query_result["documents"][0])) | |
#if st.session_state.vector_index_properties["settings"].get("rerank"): | |
# documents = rerank(st.session_state.client, documents, question, 10) # st.session_state.vector_index_properties["settings"]["top_k"]) | |
return "\n".join(documents) | |
def do_query(query): | |
# add the submissions as context (only in prompt, not in history) | |
grounding = proximity_search(query) | |
prompt = query + ". For a project share the image as markdown and mention the url as well. The context for the question: " + grounding; | |
#messages = st.session_state.messages.copy() | |
#messages.append({"role": "user", "content": prompt}) | |
#st.session_state.messages.append({"role": "user", "content": query}) | |
messages = [{"role": "user", "content": prompt}] | |
# Get response from IBM | |
with st.spinner("Thinking..."): | |
assistant_reply = IBM_chat(messages, 0) ## no creativity here, just searching | |
# Display assistant message | |
st.chat_message("assistant").markdown(assistant_reply) | |
#st.session_state.messages.append({"role": "assistant", "content": assistant_reply}) | |
#st.session_state.query = query | |
############################ | |
## | |
## UI | |
## | |
############################ | |
# Load the banner image from the same directory | |
st.image("banner_policy.jpg", use_container_width=True) | |
# set up sidebar | |
st.sidebar.title("๐ง Synergy Scrolling") | |
st.sidebar.write( | |
"Synergy Scrolling analyzes policies and finds relevant past projects. " | |
"This tool helps match your policy or business idea with projects from " | |
"previous LabLab hackathons." | |
) | |
################ INIT | |
if "client" not in st.session_state: | |
with st.spinner("โณ Waking the wizard ..."): | |
IBM_token() | |
wml_credentials = get_credentials() | |
st.session_state.client = APIClient(credentials=wml_credentials, project_id=os.getenv("IBM_PROJECT_ID")) | |
#vector_index_details = st.session_state.client.data_assets.get_details(VECTOR_DB) | |
#st.session_state.vector_index_properties = vector_index_details["entity"]["vector_index"] | |
#st.session_state.top_n = 20 if st.session_state.vector_index_properties["settings"].get("rerank") else int(st.session_state.vector_index_properties["settings"]["top_k"]) | |
st.session_state.emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2') | |
st.session_state.top_n = 10 | |
if "chroma_collection" not in st.session_state: | |
with st.spinner("โณ Dusting off the scroll books ..."): | |
st.session_state.chroma_collection = hydrate_chromadb() | |
query = "" | |
################ main UI | |
st.title("๐ฎ Policy Scroll") | |
st.subheader("AI-Powered Project & Policy Matching") | |
st.write("Explore the Lab Lab Library to find relevant past projects that align with your policy or new initiative.") | |
################ sidebar UI | |
policy_input = st.sidebar.text_area("๐ Enter Your Policy or Business Idea:") | |
if st.sidebar.button("๐ Analyze with IBM Granite"): | |
if policy_input.strip(): | |
prompt = f"Define search criteria for projects to implement: {policy_input}" | |
# Get response from IBM | |
with st.spinner("Analyzing..."): | |
result = IBM_query(prompt, 0.7) | |
st.session_state["extended_query"] = "Find 3 projects that best match and explain why, with these criteria: " + result | |
else: | |
st.sidebar.warning("Please enter a policy or business idea first!") | |
# Display AI result in another textarea | |
st.sidebar.text_area("๐ก Extended query:", value=st.session_state.get("extended_query", ""), height=150) | |
if st.sidebar.button("๐ Search for synergy"): | |
query = st.session_state.get("extended_query", "") | |
# Suggested search queries as buttons | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
q = "Projects with a link with Solarpunk" | |
if st.button(q): | |
query = q | |
with col2: | |
q = "DEI aware projects" | |
if st.button(q): | |
query = q | |
with col3: | |
q = "Decentral projects" | |
if st.button(q): | |
query = q | |
# User input in Streamlit | |
user_input = st.text_input("Describe your policy or project to find relevant Lab Lab projects...", "") | |
# Display chat history | |
#for message in st.session_state.messages: | |
# with st.chat_message(message["role"]): | |
# st.markdown(message["content"]) | |
if user_input: | |
do_query(user_input) | |
if query: | |
do_query(query) | |