Spaces:
Sleeping
Sleeping
import os | |
import getpass | |
import streamlit as st | |
def get_credentials(): | |
return { | |
"url" : "https://us-south.ml.cloud.ibm.com", | |
"apikey" : os.getenv("IBM_API_KEY") | |
} | |
model_id = "ibm/granite-3-8b-instruct" | |
parameters = { | |
"decoding_method": "greedy", | |
"max_new_tokens": 900, | |
"min_new_tokens": 0, | |
"repetition_penalty": 1 | |
} | |
project_id = os.getenv("IBM_PROJECT_ID") | |
space_id = os.getenv("IBM_SPACE_ID") | |
from ibm_watsonx_ai.foundation_models import ModelInference | |
model = ModelInference( | |
model_id = model_id, | |
params = parameters, | |
credentials = get_credentials(), | |
project_id = project_id, | |
# space_id = space_id | |
) | |
from ibm_watsonx_ai.client import APIClient | |
wml_credentials = get_credentials() | |
client = APIClient(credentials=wml_credentials, project_id=project_id) #, space_id=space_id) | |
vector_index_id = "14c14504-5f45-4e6c-8f0f-25f2378a1d99" | |
vector_index_details = client.data_assets.get_details(vector_index_id) | |
vector_index_properties = vector_index_details["entity"]["vector_index"] | |
top_n = 20 if vector_index_properties["settings"].get("rerank") else int(vector_index_properties["settings"]["top_k"]) | |
def rerank( client, documents, query, top_n ): | |
from ibm_watsonx_ai.foundation_models import Rerank | |
reranker = Rerank( | |
model_id="cross-encoder/ms-marco-minilm-l-12-v2", | |
api_client=client, | |
params={ | |
"return_options": { | |
"top_n": top_n | |
}, | |
"truncate_input_tokens": 512 | |
} | |
) | |
reranked_results = reranker.generate(query=query, inputs=documents)["results"] | |
new_documents = [] | |
for result in reranked_results: | |
result_index = result["index"] | |
new_documents.append(documents[result_index]) | |
return new_documents | |
from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings | |
emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2') | |
import subprocess | |
import gzip | |
import json | |
import chromadb | |
import random | |
import string | |
def hydrate_chromadb(): | |
data = client.data_assets.get_content(vector_index_id) | |
content = gzip.decompress(data) | |
stringified_vectors = str(content, "utf-8") | |
vectors = json.loads(stringified_vectors) | |
chroma_client = chromadb.Client() | |
# make sure collection is empty if it already existed | |
collection_name = "my_collection" | |
try: | |
collection = chroma_client.delete_collection(name=collection_name) | |
except: | |
print("Collection didn't exist - nothing to do.") | |
collection = chroma_client.create_collection(name=collection_name) | |
vector_embeddings = [] | |
vector_documents = [] | |
vector_metadatas = [] | |
vector_ids = [] | |
for vector in vectors: | |
vector_embeddings.append(vector["embedding"]) | |
vector_documents.append(vector["content"]) | |
metadata = vector["metadata"] | |
lines = metadata["loc"]["lines"] | |
clean_metadata = {} | |
clean_metadata["asset_id"] = metadata["asset_id"] | |
clean_metadata["asset_name"] = metadata["asset_name"] | |
clean_metadata["url"] = metadata["url"] | |
clean_metadata["from"] = lines["from"] | |
clean_metadata["to"] = lines["to"] | |
vector_metadatas.append(clean_metadata) | |
asset_id = vector["metadata"]["asset_id"] | |
random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10)) | |
id = "{}:{}-{}-{}".format(asset_id, lines["from"], lines["to"], random_string) | |
vector_ids.append(id) | |
collection.add( | |
embeddings=vector_embeddings, | |
documents=vector_documents, | |
metadatas=vector_metadatas, | |
ids=vector_ids | |
) | |
return collection | |
chroma_collection = hydrate_chromadb() | |
def proximity_search( question ): | |
query_vectors = emb.embed_query(question) | |
query_result = chroma_collection.query( | |
query_embeddings=query_vectors, | |
n_results=top_n, | |
include=["documents", "metadatas", "distances"] | |
) | |
documents = list(reversed(query_result["documents"][0])) | |
if vector_index_properties["settings"].get("rerank"): | |
documents = rerank(client, documents, question, vector_index_properties["settings"]["top_k"]) | |
return "\n".join(documents) | |
# Streamlit UI | |
st.title("π IBM Watson RAG Chatbot") | |
# User input in Streamlit | |
question = st.text_input("Enter your question:") | |
if question: | |
# Retrieve relevant grounding context | |
grounding = proximity_search(question) | |
# Format the question with retrieved context | |
formatted_question = f"""<|start_of_role|>user<|end_of_role|>Use the following pieces of context to answer the question. | |
{grounding} | |
Question: {question}<|end_of_text|> | |
<|start_of_role|>assistant<|end_of_role|>""" | |
# Placeholder for a prompt input (Optional) | |
prompt_input = "" # Set this dynamically if needed | |
prompt = f"""{prompt_input}{formatted_question}""" | |
# Simulated AI response (Replace with actual model call) | |
generated_response = f"AI Response based on: {prompt}" | |
# Display results | |
st.subheader("π Retrieved Context") | |
st.write(grounding) | |
st.subheader("π€ AI Response") | |
st.write(generated_response) | |