IBMHackRAG / app.py
BaRiDo's picture
Update app.py
39bc853 verified
raw
history blame
6.99 kB
import os
import getpass
import requests
import sentence_transformers
import streamlit as st
VECTOR_DB ="c8af7dfa-bcad-46e5-b69d-cd85ce9315d1"
IBM_API_KEY = os.getenv("IBM_API_KEY")
IBM_PROJECT_ID = "a0659778-f4ce-4da1-ba01-43b4f43a026f"
IBM_URL_TOKEN = "https://iam.cloud.ibm.com/identity/token"
IBM_URL_CHAT = "https://us-south.ml.cloud.ibm.com/ml/v1/text/chat?version=2023-10-25"
if "messages" not in st.session_state:
st.session_state.messages = []
##############################################
##
## IBM API
##
##############################################
def IBM_token():
# Define the headers
headers = {
"Content-Type": "application/x-www-form-urlencoded"
}
# Define the data payload
data = {
"grant_type": "urn:ibm:params:oauth:grant-type:apikey",
"apikey": IBM_API_KEY
}
# Make the POST request
response = requests.post(IBM_URL_TOKEN, headers=headers, data=data)
st.session_state.IBM_ACCESS_TOKEN = response.json().get("access_token", "")
def IBM_chat (messages):
body = {
"model_id": "ibm/granite-3-8b-instruct",
"project_id": IBM_PROJECT_ID,
"messages": messages,
"max_tokens": 10000,
"temperature": 0.7,
"time_limit": 50000
}
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
"Authorization": "Bearer " + st.session_state.IBM_ACCESS_TOKEN
}
response = requests.post(
IBM_URL_CHAT,
headers=headers,
json=body
)
if response.status_code != 200:
raise Exception("Non-200 response: " + str(response.text))
response = response.json()
return response["choices"][0]["message"]["content"]
## get token
IBM_token()
def get_credentials():
return {
"url" : "https://us-south.ml.cloud.ibm.com",
"apikey" : os.getenv("IBM_API_KEY")
}
model_id = "ibm/granite-3-8b-instruct"
parameters = {
"decoding_method": "greedy",
"max_new_tokens": 900,
"min_new_tokens": 0,
"repetition_penalty": 1
}
project_id = os.getenv("IBM_PROJECT_ID")
space_id = os.getenv("IBM_SPACE_ID")
from ibm_watsonx_ai.foundation_models import ModelInference
model = ModelInference(
model_id = model_id,
params = parameters,
credentials = get_credentials(),
project_id = project_id,
space_id = space_id
)
from ibm_watsonx_ai.client import APIClient
wml_credentials = get_credentials()
client = APIClient(credentials=wml_credentials, project_id=project_id) #, space_id=space_id)
vector_index_id = VECTOR_DB
vector_index_details = client.data_assets.get_details(vector_index_id)
vector_index_properties = vector_index_details["entity"]["vector_index"]
top_n = 20 if vector_index_properties["settings"].get("rerank") else int(vector_index_properties["settings"]["top_k"])
def rerank( client, documents, query, top_n ):
from ibm_watsonx_ai.foundation_models import Rerank
reranker = Rerank(
model_id="cross-encoder/ms-marco-minilm-l-12-v2",
api_client=client,
params={
"return_options": {
"top_n": top_n
},
"truncate_input_tokens": 512
}
)
reranked_results = reranker.generate(query=query, inputs=documents)["results"]
new_documents = []
for result in reranked_results:
result_index = result["index"]
new_documents.append(documents[result_index])
return new_documents
from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings
emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2')
import subprocess
import gzip
import json
import chromadb
import random
import string
def hydrate_chromadb():
data = client.data_assets.get_content(vector_index_id)
content = gzip.decompress(data)
stringified_vectors = str(content, "utf-8")
vectors = json.loads(stringified_vectors)
#chroma_client = chromadb.Client()
#chroma_client = chromadb.InMemoryClient()
chroma_client = chromadb.PersistentClient(path="./chroma_db")
# make sure collection is empty if it already existed
collection_name = "my_collection"
try:
collection = chroma_client.delete_collection(name=collection_name)
except:
print("Collection didn't exist - nothing to do.")
collection = chroma_client.create_collection(name=collection_name)
vector_embeddings = []
vector_documents = []
vector_metadatas = []
vector_ids = []
for vector in vectors:
vector_embeddings.append(vector["embedding"])
vector_documents.append(vector["content"])
metadata = vector["metadata"]
lines = metadata["loc"]["lines"]
clean_metadata = {}
clean_metadata["asset_id"] = metadata["asset_id"]
clean_metadata["asset_name"] = metadata["asset_name"]
clean_metadata["url"] = metadata["url"]
clean_metadata["from"] = lines["from"]
clean_metadata["to"] = lines["to"]
vector_metadatas.append(clean_metadata)
asset_id = vector["metadata"]["asset_id"]
random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
id = "{}:{}-{}-{}".format(asset_id, lines["from"], lines["to"], random_string)
vector_ids.append(id)
collection.add(
embeddings=vector_embeddings,
documents=vector_documents,
metadatas=vector_metadatas,
ids=vector_ids
)
return collection
chroma_collection = hydrate_chromadb()
def proximity_search( question ):
query_vectors = emb.embed_query(question)
query_result = chroma_collection.query(
query_embeddings=query_vectors,
n_results=top_n,
include=["documents", "metadatas", "distances"]
)
documents = list(reversed(query_result["documents"][0]))
if vector_index_properties["settings"].get("rerank"):
documents = rerank(client, documents, question, vector_index_properties["settings"]["top_k"])
return "\n".join(documents)
# Streamlit UI
st.title("πŸ” IBM Watson RAG Chatbot")
# User input in Streamlit
user_input = st.text_input("Enter your question:")
if user_input:
# Display user message
st.chat_message("user").markdown(user_input)
grounding = proximity_search(user_input)
# add the submissions as context (only in prompt, not in history)
prompt = user_input + ". Provide urls where possible. Given the context: " + grounding;
messages = st.session_state.messages.copy()
messages.append({"role": "user", "content": prompt})
st.session_state.messages.append({"role": "user", "content": user_input})
# Get response from IBM
with st.spinner("Thinking..."):
assistant_reply = IBM_chat(messages)
# Display assistant message
st.chat_message("assistant").markdown(assistant_reply)
st.session_state.messages.append({"role": "assistant", "content": assistant_reply})