File size: 5,968 Bytes
96e47ba
 
 
 
 
 
 
 
 
 
 
f94d355
96e47ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94d355
96e47ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import random
import string
import json
import gzip

import chromadb
from ibm_watsonx_ai.client import APIClient
from ibm_watsonx_ai.foundation_models import ModelInference, Rerank
from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings

VECTOR_DB = "c8af7dfa-bcad-46e5-b69d-cd85ce9315d1"

def get_credentials():
    """
    Obtain credentials for Watsonx.ai from environment.
    """
    return {
        "url": "https://us-south.ml.cloud.ibm.com",
        "apikey": os.getenv("IBM_API_KEY")
    }


def rerank(client, documents, query, top_n):
    """
    Rerank a list of documents given a query using the Rerank model.
    Returns the documents in a new order (highest relevance first).
    """
    reranker = Rerank(
        model_id="cross-encoder/ms-marco-minilm-l-12-v2",
        api_client=client,
        params={
            "return_options": {
                "top_n": top_n
            },
            "truncate_input_tokens": 512
        }
    )

    reranked_results = reranker.generate(query=query, inputs=documents)["results"]

    # Build the new list of documents
    new_documents = []
    for result in reranked_results:
        result_index = result["index"]
        new_documents.append(documents[result_index])

    return new_documents


def RAGinit():
    """
    Initialize:
      - Watsonx.ai Client
      - Foundation Model
      - Embeddings
      - ChromaDB Collection
      - Vector index properties
      - Top N for query

    Returns all objects/values needed by RAG_proximity_search.
    """
    # Project/Space from environment
    project_id = os.getenv("IBM_PROJECT_ID")
    space_id = os.getenv("IBM_SPACE_ID")

    # Watsonx.ai client
    wml_credentials = get_credentials()
    client = APIClient(credentials=wml_credentials, project_id=project_id)

    # Model Inference
    model_inference_params = {
        "decoding_method": "greedy",
        "max_new_tokens": 900,
        "min_new_tokens": 0,
        "repetition_penalty": 1
    }
    model = ModelInference(
        model_id="ibm/granite-3-8b-instruct",
        params=model_inference_params,
        credentials=get_credentials(),
        project_id=project_id,
        space_id=space_id
    )

    # Vector index details
    vector_index_id =VECTOR_DB
    vector_index_details = client.data_assets.get_details(vector_index_id)
    vector_index_properties = vector_index_details["entity"]["vector_index"]

    # Decide how many results to return
    top_n = 20 if vector_index_properties["settings"].get("rerank") \
        else int(vector_index_properties["settings"]["top_k"])

    # Embedding model
    emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2')

    # Hydrate ChromaDB with embeddings from the vector index
    chroma_collection = _hydrate_chromadb(client, vector_index_id)

    return client, model, emb, chroma_collection, vector_index_properties, top_n


def _hydrate_chromadb(client, vector_index_id):
    """
    Helper function to retrieve the stored embedding data from Watsonx.ai,
    then create (or reset) and populate a ChromaDB collection.
    """
    data = client.data_assets.get_content(vector_index_id)
    content = gzip.decompress(data)
    stringified_vectors = content.decode("utf-8")
    vectors = json.loads(stringified_vectors)

    # Use a Persistent ChromaDB client (on-disk)
    chroma_client = chromadb.PersistentClient(path="./chroma_db")

    # Create or clear the collection
    collection_name = "my_collection"
    try:
        chroma_client.delete_collection(name=collection_name)
    except:
        print("Collection didn't exist - nothing to do.")

    collection = chroma_client.create_collection(name=collection_name)

    # Prepare data for insertion
    vector_embeddings = []
    vector_documents = []
    vector_metadatas = []
    vector_ids = []

    for vector in vectors:
        embedding = vector["embedding"]
        content = vector["content"]
        metadata = vector["metadata"]
        lines = metadata["loc"]["lines"]

        vector_embeddings.append(embedding)
        vector_documents.append(content)

        clean_metadata = {
            "asset_id": metadata["asset_id"],
            "asset_name": metadata["asset_name"],
            "url": metadata["url"],
            "from": lines["from"],
            "to": lines["to"]
        }
        vector_metadatas.append(clean_metadata)

        # Generate unique ID
        asset_id = metadata["asset_id"]
        random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
        doc_id = f"{asset_id}:{lines['from']}-{lines['to']}-{random_string}"
        vector_ids.append(doc_id)

    # Add all data to the collection
    collection.add(
        embeddings=vector_embeddings,
        documents=vector_documents,
        metadatas=vector_metadatas,
        ids=vector_ids
    )

    return collection


def RAG_proximity_search(question, client, model, emb, chroma_collection, vector_index_properties, top_n):
    """
    Execute a proximity search in the ChromaDB collection for the given question.
    Optionally rerank results if specified in the vector index properties.
    Returns a concatenated string of best matching documents.
    """
    # Embed query
    query_vectors = emb.embed_query(question)

    # Query top_n results from ChromaDB
    query_result = chroma_collection.query(
        query_embeddings=query_vectors,
        n_results=top_n,
        include=["documents", "metadatas", "distances"]
    )

    # Documents come back in ascending distance, so best match is index=0
    documents = query_result["documents"][0]

    # If rerank is enabled, reorder the documents
    if vector_index_properties["settings"].get("rerank"):
        documents = rerank(client, documents, question, vector_index_properties["settings"]["top_k"])

    # Return them as a single string
    return "\n".join(documents)