File size: 5,216 Bytes
66b3608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a1026c
66b3608
 
 
 
 
3bc66ce
66b3608
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
import getpass

import streamlit as st

def get_credentials():
	return {
		"url" : "https://us-south.ml.cloud.ibm.com",
		"apikey" : os.getenv("IBM_API_KEY")
	}

model_id = "ibm/granite-3-8b-instruct"

parameters = {
    "decoding_method": "greedy",
    "max_new_tokens": 900,
    "min_new_tokens": 0,
    "repetition_penalty": 1
}

project_id = os.getenv("IBM_PROJECT_ID")
space_id = os.getenv("IBM_SPACE_ID")

from ibm_watsonx_ai.foundation_models import ModelInference

model = ModelInference(
	model_id = model_id,
	params = parameters,
	credentials = get_credentials(),
	project_id = project_id,
	# space_id = space_id
	)

from ibm_watsonx_ai.client import APIClient

wml_credentials = get_credentials()
client = APIClient(credentials=wml_credentials, project_id=project_id)  #, space_id=space_id)

vector_index_id = "14c14504-5f45-4e6c-8f0f-25f2378a1d99"
vector_index_details = client.data_assets.get_details(vector_index_id)
vector_index_properties = vector_index_details["entity"]["vector_index"]

top_n = 20 if vector_index_properties["settings"].get("rerank") else int(vector_index_properties["settings"]["top_k"])

def rerank( client, documents, query, top_n ):
    from ibm_watsonx_ai.foundation_models import Rerank

    reranker = Rerank(
        model_id="cross-encoder/ms-marco-minilm-l-12-v2",
        api_client=client,
        params={
            "return_options": {
                "top_n": top_n
            },
            "truncate_input_tokens": 512
        }
    )

    reranked_results = reranker.generate(query=query, inputs=documents)["results"]

    new_documents = []
    
    for result in reranked_results:
        result_index = result["index"]
        new_documents.append(documents[result_index])
        
    return new_documents

from ibm_watsonx_ai.foundation_models.embeddings.sentence_transformer_embeddings import SentenceTransformerEmbeddings

emb = SentenceTransformerEmbeddings('sentence-transformers/all-MiniLM-L6-v2')

import subprocess
import gzip
import json
import chromadb
import random
import string

def hydrate_chromadb():
    data = client.data_assets.get_content(vector_index_id)
    content = gzip.decompress(data)
    stringified_vectors = str(content, "utf-8")
    vectors = json.loads(stringified_vectors)

    chroma_client = chromadb.Client()

    # make sure collection is empty if it already existed
    collection_name = "my_collection"
    try:
        collection = chroma_client.delete_collection(name=collection_name)
    except:
        print("Collection didn't exist - nothing to do.")
    collection = chroma_client.create_collection(name=collection_name)

    vector_embeddings = []
    vector_documents = []
    vector_metadatas = []
    vector_ids = []

    for vector in vectors:
        vector_embeddings.append(vector["embedding"])
        vector_documents.append(vector["content"])
        metadata = vector["metadata"]
        lines = metadata["loc"]["lines"]
        clean_metadata = {}
        clean_metadata["asset_id"] = metadata["asset_id"]
        clean_metadata["asset_name"] = metadata["asset_name"]
        clean_metadata["url"] = metadata["url"]
        clean_metadata["from"] = lines["from"]
        clean_metadata["to"] = lines["to"]
        vector_metadatas.append(clean_metadata)
        asset_id = vector["metadata"]["asset_id"]
        random_string = ''.join(random.choices(string.ascii_uppercase + string.digits, k=10))
        id = "{}:{}-{}-{}".format(asset_id, lines["from"], lines["to"], random_string)
        vector_ids.append(id)

    collection.add(
        embeddings=vector_embeddings,
        documents=vector_documents,
        metadatas=vector_metadatas,
        ids=vector_ids
    )
    return collection

chroma_collection = hydrate_chromadb()

def proximity_search( question ):
    query_vectors = emb.embed_query(question)
    query_result = chroma_collection.query(
        query_embeddings=query_vectors,
        n_results=top_n,
        include=["documents", "metadatas", "distances"]
    )

    documents = list(reversed(query_result["documents"][0]))

    if vector_index_properties["settings"].get("rerank"):
        documents = rerank(client, documents, question, vector_index_properties["settings"]["top_k"])

    return "\n".join(documents)

# Streamlit UI
st.title("πŸ” IBM Watson RAG Chatbot")

# User input in Streamlit
question = st.text_input("Enter your question:")

if question:
    # Retrieve relevant grounding context
    grounding = proximity_search(question)

    # Format the question with retrieved context
    formatted_question = f"""<|start_of_role|>user<|end_of_role|>Use the following pieces of context to answer the question.

{grounding}

Question: {question}<|end_of_text|>
<|start_of_role|>assistant<|end_of_role|>"""

    # Placeholder for a prompt input (Optional)
    prompt_input = ""  # Set this dynamically if needed
    prompt = f"""{prompt_input}{formatted_question}"""

    # Simulated AI response (Replace with actual model call)
    generated_response = f"AI Response based on: {prompt}"

    # Display results
    st.subheader("πŸ“Œ Retrieved Context")
    st.write(grounding)

    st.subheader("πŸ€– AI Response")
    st.write(generated_response)