Update app.py
Browse files
app.py
CHANGED
@@ -1,496 +1,388 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import requests
|
3 |
-
import pandas as pd
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import seaborn as sns
|
8 |
-
import base64
|
9 |
-
from io import BytesIO
|
10 |
-
from PIL import Image, ImageEnhance
|
11 |
-
import time
|
12 |
-
from typing import Dict, Any, List
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
""",
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
return
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
""
|
204 |
-
if
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
#
|
212 |
-
|
213 |
-
"
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
#
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
st.
|
255 |
-
|
256 |
-
|
257 |
-
st.
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
"
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
st.
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
st.
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
st.
|
295 |
-
|
296 |
-
st.
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
st.
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
with
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
st.markdown("
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
# Display the Hindi text with better formatting
|
391 |
-
with st.expander("Show Hindi Text"):
|
392 |
-
hindi_text = response.get("Hindi Summary", "Hindi text not available.")
|
393 |
-
|
394 |
-
# Format the text for better readability
|
395 |
-
paragraphs = hindi_text.split("। ")
|
396 |
-
|
397 |
-
for paragraph in paragraphs:
|
398 |
-
if paragraph.strip():
|
399 |
-
# Add a period if it doesn't end with one
|
400 |
-
if not paragraph.strip().endswith("।"):
|
401 |
-
paragraph += "।"
|
402 |
-
st.markdown(f"<p style='font-size: 16px; margin-bottom: 10px;'>{paragraph}</p>", unsafe_allow_html=True)
|
403 |
-
|
404 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
405 |
-
|
406 |
-
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
407 |
-
|
408 |
-
# Display articles
|
409 |
-
st.markdown("<h3 class='sub-header'>News Articles</h3>", unsafe_allow_html=True)
|
410 |
-
articles = response.get("Articles", [])
|
411 |
-
|
412 |
-
if not articles:
|
413 |
-
st.info("No articles found for this company.")
|
414 |
-
else:
|
415 |
-
for i, article in enumerate(articles):
|
416 |
-
display_article(article, i)
|
417 |
-
|
418 |
-
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
419 |
-
|
420 |
-
# Display comparative analysis
|
421 |
-
st.markdown("<h3 class='sub-header'>Comparative Analysis</h3>", unsafe_allow_html=True)
|
422 |
-
|
423 |
-
# Display topic overlap
|
424 |
-
topic_data = response["Comparative Sentiment Score"]["Topic Overlap"]
|
425 |
-
|
426 |
-
col1, col2 = st.columns(2)
|
427 |
-
|
428 |
-
with col1:
|
429 |
-
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
430 |
-
st.markdown("<h4>Common Topics</h4>", unsafe_allow_html=True)
|
431 |
-
|
432 |
-
common_topics = topic_data.get("Common Topics Across All", [])
|
433 |
-
if common_topics:
|
434 |
-
for topic in common_topics:
|
435 |
-
st.markdown(f"<span class='topic-tag'>{topic}</span>", unsafe_allow_html=True)
|
436 |
-
else:
|
437 |
-
st.info("No common topics found across articles.")
|
438 |
-
|
439 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
440 |
-
|
441 |
-
with col2:
|
442 |
-
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
443 |
-
st.markdown("<h4>Coverage Comparison</h4>", unsafe_allow_html=True)
|
444 |
-
|
445 |
-
comparisons = response["Comparative Sentiment Score"].get("Coverage Differences", [])
|
446 |
-
if comparisons:
|
447 |
-
for i, comparison in enumerate(comparisons[:3]): # Show only top 3 comparisons
|
448 |
-
st.markdown(f"<p><strong>{i+1}.</strong> {comparison.get('Comparison', '')}</p>", unsafe_allow_html=True)
|
449 |
-
st.markdown(f"<p class='info-text'>{comparison.get('Impact', '')}</p>", unsafe_allow_html=True)
|
450 |
-
else:
|
451 |
-
st.info("No comparative insights available.")
|
452 |
-
|
453 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
454 |
-
|
455 |
-
# Display full comparison in expander
|
456 |
-
with st.expander("View All Comparisons"):
|
457 |
-
comparisons = response["Comparative Sentiment Score"].get("Coverage Differences", [])
|
458 |
-
for i, comparison in enumerate(comparisons):
|
459 |
-
st.markdown(f"<p><strong>{i+1}.</strong> {comparison.get('Comparison', '')}</p>", unsafe_allow_html=True)
|
460 |
-
st.markdown(f"<p class='info-text'>{comparison.get('Impact', '')}</p>", unsafe_allow_html=True)
|
461 |
-
st.markdown("<hr>", unsafe_allow_html=True)
|
462 |
-
|
463 |
-
# Show JSON in example format if requested
|
464 |
-
if show_json:
|
465 |
-
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
466 |
-
st.markdown("<h3 class='sub-header'>Example JSON Format</h3>", unsafe_allow_html=True)
|
467 |
-
|
468 |
-
# Get the formatted JSON
|
469 |
-
json_output = generate_example_output(company_name)
|
470 |
-
|
471 |
-
# Display the JSON in a code block
|
472 |
-
st.code(json_output, language="json")
|
473 |
-
else:
|
474 |
-
# Display placeholder
|
475 |
-
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
476 |
-
st.markdown("<h3 class='sub-header'>Enter a Company Name to Begin Analysis</h3>", unsafe_allow_html=True)
|
477 |
-
st.markdown("""
|
478 |
-
<p class='info-text'>
|
479 |
-
This application will:
|
480 |
-
</p>
|
481 |
-
<ul class='info-text'>
|
482 |
-
<li>Extract news articles from multiple sources</li>
|
483 |
-
<li>Analyze sentiment (positive, negative, neutral)</li>
|
484 |
-
<li>Identify key topics in each article</li>
|
485 |
-
<li>Perform comparative analysis across articles</li>
|
486 |
-
<li>Generate Hindi speech output summarizing the findings</li>
|
487 |
-
</ul>
|
488 |
-
""", unsafe_allow_html=True)
|
489 |
-
st.markdown("</div>", unsafe_allow_html=True)
|
490 |
-
|
491 |
-
# Sample output image
|
492 |
-
st.image("https://miro.medium.com/max/1400/1*Ger-949PgQnaje2oa9XMdw.png", caption="Sample sentiment analysis visualization")
|
493 |
-
|
494 |
-
# Footer
|
495 |
-
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
496 |
-
st.markdown("<p class='info-text' style='text-align: center;'>News Summarization & Text-to-Speech Application | Developed with Streamlit and FastAPI</p>", unsafe_allow_html=True)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import base64
|
9 |
+
from io import BytesIO
|
10 |
+
from PIL import Image, ImageEnhance
|
11 |
+
import time
|
12 |
+
from typing import Dict, Any, List, Optional
|
13 |
+
import uuid
|
14 |
+
import asyncio
|
15 |
+
from pydantic import BaseModel
|
16 |
+
import traceback
|
17 |
+
|
18 |
+
# Import backend utility functions (assuming these are in a separate utils.py file)
|
19 |
+
# For Hugging Face Spaces, you'll need to include these functions in the same file or a utils.py alongside app.py
|
20 |
+
from utils import (search_news, analyze_article_sentiment, perform_comparative_analysis,
|
21 |
+
translate_to_hindi, text_to_speech, prepare_final_report, NewsArticle)
|
22 |
+
|
23 |
+
# For this example, I'll assume utils.py is available. If not, you'd need to paste those function definitions here.
|
24 |
+
|
25 |
+
# API Base URL - Not needed since we're integrating directly, but kept for reference
|
26 |
+
API_BASE_URL = "http://localhost:8000"
|
27 |
+
|
28 |
+
# Define request/response models (from api.py)
|
29 |
+
class CompanyRequest(BaseModel):
|
30 |
+
company_name: str
|
31 |
+
|
32 |
+
class TextToSpeechRequest(BaseModel):
|
33 |
+
text: str
|
34 |
+
output_filename: Optional[str] = None
|
35 |
+
|
36 |
+
class SentimentAnalysisRequest(BaseModel):
|
37 |
+
articles: List[Dict[str, Any]]
|
38 |
+
|
39 |
+
# Backend functions adapted from api.py
|
40 |
+
async def get_news(company_name: str) -> Dict[str, Any]:
|
41 |
+
try:
|
42 |
+
articles = search_news(company_name, num_articles=5)
|
43 |
+
if not articles:
|
44 |
+
return {"error": f"No news articles found for {company_name}"}
|
45 |
+
article_data = [article.to_dict() for article in articles]
|
46 |
+
return {"articles": article_data}
|
47 |
+
except Exception as e:
|
48 |
+
return {"error": str(e)}
|
49 |
+
|
50 |
+
async def analyze_sentiment(articles: List[Dict[str, Any]]) -> Dict[str, Any]:
|
51 |
+
try:
|
52 |
+
news_articles = []
|
53 |
+
for article_dict in articles:
|
54 |
+
article = NewsArticle(
|
55 |
+
title=article_dict["title"],
|
56 |
+
url=article_dict["url"],
|
57 |
+
content=article_dict["content"],
|
58 |
+
summary=article_dict.get("summary", ""),
|
59 |
+
source=article_dict.get("source", ""),
|
60 |
+
date=article_dict.get("date", ""),
|
61 |
+
sentiment=article_dict.get("sentiment", ""),
|
62 |
+
topics=article_dict.get("topics", [])
|
63 |
+
)
|
64 |
+
news_articles.append(article)
|
65 |
+
|
66 |
+
detailed_sentiment = [analyze_article_sentiment(article) for article in news_articles]
|
67 |
+
comparative_analysis = perform_comparative_analysis(news_articles)
|
68 |
+
return {
|
69 |
+
"sentiment_analysis": {
|
70 |
+
"detailed_sentiment": detailed_sentiment,
|
71 |
+
"comparative_analysis": comparative_analysis
|
72 |
+
}
|
73 |
+
}
|
74 |
+
except Exception as e:
|
75 |
+
return {"error": str(e)}
|
76 |
+
|
77 |
+
async def generate_speech(text: str, output_filename: str = None) -> Dict[str, Any]:
|
78 |
+
try:
|
79 |
+
if not output_filename:
|
80 |
+
unique_id = uuid.uuid4().hex
|
81 |
+
output_filename = f"audio_files/{unique_id}.mp3"
|
82 |
+
elif not output_filename.startswith("audio_files/"):
|
83 |
+
output_filename = f"audio_files/{output_filename}"
|
84 |
+
|
85 |
+
os.makedirs("audio_files", exist_ok=True)
|
86 |
+
hindi_text = translate_to_hindi(text)
|
87 |
+
audio_file = text_to_speech(hindi_text, output_filename)
|
88 |
+
if not audio_file:
|
89 |
+
return {"error": "Failed to generate audio file"}
|
90 |
+
return {"audio_file": audio_file, "text": hindi_text}
|
91 |
+
except Exception as e:
|
92 |
+
return {"error": str(e)}
|
93 |
+
|
94 |
+
async def complete_analysis(company_name: str) -> Dict[str, Any]:
|
95 |
+
try:
|
96 |
+
articles = search_news(company_name, num_articles=5)
|
97 |
+
if not articles:
|
98 |
+
return {"error": f"No news articles found for {company_name}"}
|
99 |
+
|
100 |
+
comparative_analysis = perform_comparative_analysis(articles)
|
101 |
+
final_report = prepare_final_report(company_name, articles, comparative_analysis)
|
102 |
+
|
103 |
+
unique_id = uuid.uuid4().hex
|
104 |
+
output_filename = f"audio_files/{unique_id}.mp3"
|
105 |
+
hindi_text = final_report["Hindi Summary"]
|
106 |
+
audio_file = text_to_speech(hindi_text, output_filename)
|
107 |
+
|
108 |
+
formatted_response = {
|
109 |
+
"Company": company_name,
|
110 |
+
"Articles": final_report["Articles"],
|
111 |
+
"Comparative Sentiment Score": {
|
112 |
+
"Sentiment Distribution": comparative_analysis["Sentiment Distribution"],
|
113 |
+
"Coverage Differences": comparative_analysis["Coverage Differences"],
|
114 |
+
"Topic Overlap": {
|
115 |
+
"Common Topics": comparative_analysis["Topic Overlap"]["Common Topics Across All"],
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"Final Sentiment Analysis": comparative_analysis["Final Sentiment Analysis"],
|
119 |
+
"Hindi Summary": final_report["Hindi Summary"]
|
120 |
+
}
|
121 |
+
|
122 |
+
unique_topics = comparative_analysis["Topic Overlap"]["Unique Topics By Article"]
|
123 |
+
for article_idx, topics in unique_topics.items():
|
124 |
+
article_num = int(article_idx) + 1
|
125 |
+
formatted_response["Comparative Sentiment Score"]["Topic Overlap"][f"Unique Topics in Article {article_num}"] = topics
|
126 |
+
|
127 |
+
if len(articles) <= 1:
|
128 |
+
formatted_response["Comparative Sentiment Score"]["Coverage Differences"] = [
|
129 |
+
{
|
130 |
+
"Comparison": f"Only one article about {company_name} was found, limiting comparative analysis.",
|
131 |
+
"Impact": "Unable to compare coverage across multiple sources for more comprehensive insights."
|
132 |
+
}
|
133 |
+
]
|
134 |
+
|
135 |
+
if audio_file:
|
136 |
+
formatted_response["Audio"] = "[Play Hindi Speech]"
|
137 |
+
formatted_response["_audio_file_path"] = audio_file
|
138 |
+
else:
|
139 |
+
formatted_response["Audio"] = "Failed to generate audio"
|
140 |
+
|
141 |
+
return formatted_response
|
142 |
+
except Exception as e:
|
143 |
+
error_message = f"Error processing request: {str(e)}"
|
144 |
+
user_message = "An error occurred during analysis. "
|
145 |
+
if "timeout" in str(e).lower():
|
146 |
+
user_message += "There was a timeout when connecting to news sources. Please try again."
|
147 |
+
elif "connection" in str(e).lower():
|
148 |
+
user_message += "There was a connection issue. Please check your internet."
|
149 |
+
elif "not found" in str(e).lower():
|
150 |
+
user_message += f"No information could be found for {company_name}."
|
151 |
+
else:
|
152 |
+
user_message += "Please try again."
|
153 |
+
return {"error": user_message}
|
154 |
+
|
155 |
+
# Streamlit UI functions (from app.py)
|
156 |
+
def generate_example_output(company_name: str) -> str:
|
157 |
+
loop = asyncio.new_event_loop()
|
158 |
+
asyncio.set_event_loop(loop)
|
159 |
+
result = loop.run_until_complete(complete_analysis(company_name))
|
160 |
+
formatted_output = {
|
161 |
+
"Company": result.get("Company", company_name),
|
162 |
+
"Articles": result.get("Articles", []),
|
163 |
+
"Comparative Sentiment Score": result.get("Comparative Sentiment Score", {
|
164 |
+
"Sentiment Distribution": {},
|
165 |
+
"Coverage Differences": [],
|
166 |
+
"Topic Overlap": {}
|
167 |
+
}),
|
168 |
+
"Final Sentiment Analysis": result.get("Final Sentiment Analysis", ""),
|
169 |
+
"Audio": result.get("Audio", "No audio available")
|
170 |
+
}
|
171 |
+
return json.dumps(formatted_output, indent=2)
|
172 |
+
|
173 |
+
def get_sentiment_color(sentiment: str) -> str:
|
174 |
+
if sentiment == "Positive":
|
175 |
+
return "positive"
|
176 |
+
elif sentiment == "Negative":
|
177 |
+
return "negative"
|
178 |
+
else:
|
179 |
+
return "neutral"
|
180 |
+
|
181 |
+
def plot_sentiment_distribution(sentiment_data: Dict[str, int]):
|
182 |
+
labels = ["Positive", "Neutral", "Negative"]
|
183 |
+
values = [sentiment_data.get(label, 0) for label in labels]
|
184 |
+
colors = ["#059669", "#6B7280", "#DC2626"]
|
185 |
+
|
186 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
187 |
+
ax.bar(labels, values, color=colors)
|
188 |
+
ax.set_title("Sentiment Distribution", fontsize=16, fontweight='bold')
|
189 |
+
ax.set_ylabel("Number of Articles", fontsize=12)
|
190 |
+
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
191 |
+
for i, v in enumerate(values):
|
192 |
+
ax.text(i, v + 0.1, str(v), ha='center', fontweight='bold')
|
193 |
+
return fig
|
194 |
+
|
195 |
+
def display_article(article: Dict[str, Any], index: int):
|
196 |
+
st.markdown(f"<div class='card'>", unsafe_allow_html=True)
|
197 |
+
sentiment = article.get("Sentiment", "Neutral")
|
198 |
+
sentiment_class = get_sentiment_color(sentiment)
|
199 |
+
st.markdown(f"<h3 class='article-title'>{index+1}. {article['Title']}</h3>", unsafe_allow_html=True)
|
200 |
+
st.markdown(f"<span class='{sentiment_class}'>{sentiment}</span>", unsafe_allow_html=True)
|
201 |
+
st.markdown("<div class='article-summary'>", unsafe_allow_html=True)
|
202 |
+
st.markdown(f"{article.get('Summary', 'No summary available.')}", unsafe_allow_html=True)
|
203 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
204 |
+
if "Topics" in article and article["Topics"]:
|
205 |
+
st.markdown("<div>", unsafe_allow_html=True)
|
206 |
+
for topic in article["Topics"]:
|
207 |
+
st.markdown(f"<span class='topic-tag'>{topic}</span>", unsafe_allow_html=True)
|
208 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
209 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
210 |
+
|
211 |
+
# Streamlit App
|
212 |
+
st.set_page_config(
|
213 |
+
page_title="News Summarization & TTS",
|
214 |
+
page_icon="📰",
|
215 |
+
layout="wide",
|
216 |
+
initial_sidebar_state="expanded"
|
217 |
+
)
|
218 |
+
|
219 |
+
st.markdown("""
|
220 |
+
<style>
|
221 |
+
.main-header { font-size: 2.5rem; font-weight: 700; color: #1E3A8A; margin-bottom: 1rem; }
|
222 |
+
.sub-header { font-size: 1.5rem; font-weight: 600; color: #2563EB; margin-top: 1rem; margin-bottom: 0.5rem; }
|
223 |
+
.card { padding: 1.5rem; border-radius: 0.5rem; background-color: #F8FAFC; border: 1px solid #E2E8F0; margin-bottom: 1rem; }
|
224 |
+
.positive { color: #059669; font-weight: 600; }
|
225 |
+
.negative { color: #DC2626; font-weight: 600; }
|
226 |
+
.neutral { color: #6B7280; font-weight: 600; }
|
227 |
+
.topic-tag { display: inline-block; padding: 0.25rem 0.5rem; border-radius: 2rem; background-color: #E5E7EB; color: #1F2937; font-size: 0.75rem; margin-right: 0.5rem; margin-bottom: 0.5rem; }
|
228 |
+
.audio-container { width: 100%; padding: 1rem; background-color: #F3F4F6; border-radius: 0.5rem; margin-top: 1rem; }
|
229 |
+
.info-text { font-size: 0.9rem; color: #4B5563; }
|
230 |
+
.article-title { font-size: 1.2rem; font-weight: 600; color: #111827; margin-bottom: 0.5rem; margin-top: 0.5rem; }
|
231 |
+
.article-summary { font-size: 0.9rem; color: #374151; margin-bottom: 0.5rem; }
|
232 |
+
.section-divider { height: 1px; background-color: #E5E7EB; margin: 1.5rem 0; }
|
233 |
+
</style>
|
234 |
+
""", unsafe_allow_html=True)
|
235 |
+
|
236 |
+
st.markdown("<h1 class='main-header'>📰 News Summarization & Text-to-Speech</h1>", unsafe_allow_html=True)
|
237 |
+
st.markdown("""
|
238 |
+
<p class='info-text'>
|
239 |
+
This application extracts news articles about a company, performs sentiment analysis, conducts comparative analysis,
|
240 |
+
and generates a text-to-speech output in Hindi. Enter a company name to get started.
|
241 |
+
</p>
|
242 |
+
""", unsafe_allow_html=True)
|
243 |
+
|
244 |
+
# Sidebar
|
245 |
+
st.sidebar.image("https://cdn-icons-png.flaticon.com/512/2593/2593073.png", width=100)
|
246 |
+
st.sidebar.title("News Analysis Settings")
|
247 |
+
|
248 |
+
company_input_method = st.sidebar.radio(
|
249 |
+
"Select company input method:",
|
250 |
+
options=["Text Input", "Choose from List"]
|
251 |
+
)
|
252 |
+
|
253 |
+
if company_input_method == "Text Input":
|
254 |
+
company_name = st.sidebar.text_input("Enter Company Name:", placeholder="e.g., Tesla")
|
255 |
+
else:
|
256 |
+
companies = ["Apple", "Google", "Microsoft", "Amazon", "Tesla", "Meta", "Netflix", "Uber", "Airbnb", "Twitter"]
|
257 |
+
company_name = st.sidebar.selectbox("Select Company:", companies)
|
258 |
+
|
259 |
+
max_articles = st.sidebar.slider("Maximum Articles to Analyze:", min_value=5, max_value=20, value=10)
|
260 |
+
analyze_button = st.sidebar.button("Analyze Company News", type="primary")
|
261 |
+
audio_speed = st.sidebar.select_slider("TTS Speech Speed:", options=["Slow", "Normal", "Fast"], value="Normal")
|
262 |
+
show_json = st.sidebar.checkbox("Show JSON output in example format")
|
263 |
+
|
264 |
+
with st.sidebar.expander("About This App"):
|
265 |
+
st.markdown("""
|
266 |
+
This application performs:
|
267 |
+
- News extraction from multiple sources
|
268 |
+
- Sentiment analysis of the content
|
269 |
+
- Topic identification and comparative analysis
|
270 |
+
- Text-to-speech conversion to Hindi
|
271 |
+
""")
|
272 |
+
|
273 |
+
# Main content
|
274 |
+
if analyze_button and company_name:
|
275 |
+
with st.spinner(f"Analyzing news for {company_name}... This may take a minute"):
|
276 |
+
loop = asyncio.new_event_loop()
|
277 |
+
asyncio.set_event_loop(loop)
|
278 |
+
response = loop.run_until_complete(complete_analysis(company_name))
|
279 |
+
|
280 |
+
if "error" in response:
|
281 |
+
st.error(response["error"])
|
282 |
+
else:
|
283 |
+
st.markdown(f"<h2 class='sub-header'>Analysis Results for {response['Company']}</h2>", unsafe_allow_html=True)
|
284 |
+
|
285 |
+
col1, col2 = st.columns([2, 1])
|
286 |
+
with col1:
|
287 |
+
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
288 |
+
st.markdown("<h3 class='sub-header'>Sentiment Overview</h3>", unsafe_allow_html=True)
|
289 |
+
st.markdown(f"{response['Final Sentiment Analysis']}")
|
290 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
291 |
+
with col2:
|
292 |
+
sentiment_data = response["Comparative Sentiment Score"]["Sentiment Distribution"]
|
293 |
+
fig = plot_sentiment_distribution(sentiment_data)
|
294 |
+
st.pyplot(fig)
|
295 |
+
|
296 |
+
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
297 |
+
|
298 |
+
if "Audio" in response and response["Audio"] == "[Play Hindi Speech]":
|
299 |
+
st.markdown("<h3 class='sub-header'>Hindi Audio Summary</h3>", unsafe_allow_html=True)
|
300 |
+
audio_file_path = response.get("_audio_file_path")
|
301 |
+
if audio_file_path and os.path.exists(audio_file_path):
|
302 |
+
st.markdown("<div class='audio-container'>", unsafe_allow_html=True)
|
303 |
+
st.audio(audio_file_path, format="audio/mp3")
|
304 |
+
with open(audio_file_path, "rb") as f:
|
305 |
+
audio_bytes = f.read()
|
306 |
+
b64 = base64.b64encode(audio_bytes).decode()
|
307 |
+
href = f'<a href="data:audio/mp3;base64,{b64}" download="hindi_summary.mp3">Download Hindi Audio</a>'
|
308 |
+
st.markdown(href, unsafe_allow_html=True)
|
309 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
310 |
+
else:
|
311 |
+
st.warning("Hindi audio could not be generated.")
|
312 |
+
|
313 |
+
with st.expander("Show Hindi Text"):
|
314 |
+
hindi_text = response.get("Hindi Summary", "Hindi text not available.")
|
315 |
+
paragraphs = hindi_text.split("। ")
|
316 |
+
for paragraph in paragraphs:
|
317 |
+
if paragraph.strip():
|
318 |
+
if not paragraph.strip().endswith("।"):
|
319 |
+
paragraph += "।"
|
320 |
+
st.markdown(f"<p style='font-size: 16px; margin-bottom: 10px;'>{paragraph}</p>", unsafe_allow_html=True)
|
321 |
+
|
322 |
+
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
323 |
+
|
324 |
+
st.markdown("<h3 class='sub-header'>News Articles</h3>", unsafe_allow_html=True)
|
325 |
+
articles = response.get("Articles", [])
|
326 |
+
if not articles:
|
327 |
+
st.info("No articles found for this company.")
|
328 |
+
else:
|
329 |
+
for i, article in enumerate(articles):
|
330 |
+
display_article(article, i)
|
331 |
+
|
332 |
+
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
333 |
+
|
334 |
+
st.markdown("<h3 class='sub-header'>Comparative Analysis</h3>", unsafe_allow_html=True)
|
335 |
+
col1, col2 = st.columns(2)
|
336 |
+
with col1:
|
337 |
+
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
338 |
+
st.markdown("<h4>Common Topics</h4>", unsafe_allow_html=True)
|
339 |
+
common_topics = response["Comparative Sentiment Score"]["Topic Overlap"].get("Common Topics", [])
|
340 |
+
if common_topics:
|
341 |
+
for topic in common_topics:
|
342 |
+
st.markdown(f"<span class='topic-tag'>{topic}</span>", unsafe_allow_html=True)
|
343 |
+
else:
|
344 |
+
st.info("No common topics found across articles.")
|
345 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
346 |
+
with col2:
|
347 |
+
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
348 |
+
st.markdown("<h4>Coverage Comparison</h4>", unsafe_allow_html=True)
|
349 |
+
comparisons = response["Comparative Sentiment Score"].get("Coverage Differences", [])
|
350 |
+
if comparisons:
|
351 |
+
for i, comparison in enumerate(comparisons[:3]):
|
352 |
+
st.markdown(f"<p><strong>{i+1}.</strong> {comparison.get('Comparison', '')}</p>", unsafe_allow_html=True)
|
353 |
+
st.markdown(f"<p class='info-text'>{comparison.get('Impact', '')}</p>", unsafe_allow_html=True)
|
354 |
+
else:
|
355 |
+
st.info("No comparative insights available.")
|
356 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
357 |
+
|
358 |
+
with st.expander("View All Comparisons"):
|
359 |
+
for i, comparison in enumerate(comparisons):
|
360 |
+
st.markdown(f"<p><strong>{i+1}.</strong> {comparison.get('Comparison', '')}</p>", unsafe_allow_html=True)
|
361 |
+
st.markdown(f"<p class='info-text'>{comparison.get('Impact', '')}</p>", unsafe_allow_html=True)
|
362 |
+
st.markdown("<hr>", unsafe_allow_html=True)
|
363 |
+
|
364 |
+
if show_json:
|
365 |
+
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
366 |
+
st.markdown("<h3 class='sub-header'>Example JSON Format</h3>", unsafe_allow_html=True)
|
367 |
+
json_output = generate_example_output(company_name)
|
368 |
+
st.code(json_output, language="json")
|
369 |
+
else:
|
370 |
+
st.markdown("<div class='card'>", unsafe_allow_html=True)
|
371 |
+
st.markdown("<h3 class='sub-header'>Enter a Company Name to Begin Analysis</h3>", unsafe_allow_html=True)
|
372 |
+
st.markdown("""
|
373 |
+
<p class='info-text'>
|
374 |
+
This application will:
|
375 |
+
</p>
|
376 |
+
<ul class='info-text'>
|
377 |
+
<li>Extract news articles from multiple sources</li>
|
378 |
+
<li>Analyze sentiment (positive, negative, neutral)</li>
|
379 |
+
<li>Identify key topics in each article</li>
|
380 |
+
<li>Perform comparative analysis across articles</li>
|
381 |
+
<li>Generate Hindi speech output summarizing the findings</li>
|
382 |
+
</ul>
|
383 |
+
""", unsafe_allow_html=True)
|
384 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
385 |
+
st.image("https://miro.medium.com/max/1400/1*Ger-949PgQnaje2oa9XMdw.png", caption="Sample sentiment analysis visualization")
|
386 |
+
|
387 |
+
st.markdown("<div class='section-divider'></div>", unsafe_allow_html=True)
|
388 |
+
st.markdown("<p class='info-text' style='text-align: center;'>News Summarization & Text-to-Speech Application | Developed with Streamlit</p>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|