|
import os |
|
import math |
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
class MipRayMarcher2(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def run_forward(self, colors, densities, depths, rendering_options): |
|
deltas = depths[:, :, 1:] - depths[:, :, :-1] |
|
colors_mid = (colors[:, :, :-1] + colors[:, :, 1:]) / 2 |
|
densities_mid = (densities[:, :, :-1] + densities[:, :, 1:]) / 2 |
|
depths_mid = (depths[:, :, :-1] + depths[:, :, 1:]) / 2 |
|
|
|
|
|
if rendering_options['clamp_mode'] == 'softplus': |
|
densities_mid = F.softplus(densities_mid - 1) |
|
else: |
|
assert False, "MipRayMarcher only supports `clamp_mode`=`softplus`!" |
|
|
|
density_delta = densities_mid * deltas |
|
|
|
alpha = 1 - torch.exp(-density_delta) |
|
|
|
alpha_shifted = torch.cat([torch.ones_like(alpha[:, :, :1]), 1-alpha + 1e-10], -2) |
|
weights = alpha * torch.cumprod(alpha_shifted, -2)[:, :, :-1] |
|
|
|
composite_rgb = torch.sum(weights * colors_mid, -2) |
|
weight_total = weights.sum(2) |
|
|
|
composite_depth = torch.sum(weights * depths_mid, -2) |
|
|
|
|
|
composite_depth = torch.nan_to_num(composite_depth, float('inf')) |
|
|
|
composite_depth = torch.clamp(composite_depth, torch.min(depths), torch.max(depths)) |
|
|
|
if rendering_options.get('white_back', False): |
|
composite_rgb = composite_rgb + 1 - weight_total |
|
|
|
composite_rgb = composite_rgb * 2 - 1 |
|
|
|
return composite_rgb, composite_depth, weights |
|
|
|
def forward(self, colors, densities, depths, rendering_options): |
|
composite_rgb, composite_depth, weights = self.run_forward(colors, densities, depths, rendering_options) |
|
|
|
return composite_rgb, composite_depth, weights |
|
|
|
def transform_vectors(matrix: torch.Tensor, vectors4: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Left-multiplies MxM @ NxM. Returns NxM. |
|
""" |
|
res = torch.matmul(vectors4, matrix.T) |
|
return res |
|
|
|
def normalize_vecs(vectors: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Normalize vector lengths. |
|
""" |
|
return vectors / (torch.norm(vectors, dim=-1, keepdim=True)) |
|
|
|
def torch_dot(x: torch.Tensor, y: torch.Tensor): |
|
""" |
|
Dot product of two tensors. |
|
""" |
|
return (x * y).sum(-1) |
|
|
|
def get_ray_limits_box(rays_o: torch.Tensor, rays_d: torch.Tensor, box_side_length): |
|
""" |
|
Author: Petr Kellnhofer |
|
Intersects rays with the [-1, 1] NDC volume. |
|
Returns min and max distance of entry. |
|
Returns -1 for no intersection. |
|
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-box-intersection |
|
""" |
|
o_shape = rays_o.shape |
|
rays_o = rays_o.detach().reshape(-1, 3) |
|
rays_d = rays_d.detach().reshape(-1, 3) |
|
|
|
|
|
bb_min = [-1*(box_side_length/2), -1*(box_side_length/2), -1*(box_side_length/2)] |
|
bb_max = [1*(box_side_length/2), 1*(box_side_length/2), 1*(box_side_length/2)] |
|
bounds = torch.tensor([bb_min, bb_max], dtype=rays_o.dtype, device=rays_o.device) |
|
is_valid = torch.ones(rays_o.shape[:-1], dtype=bool, device=rays_o.device) |
|
|
|
|
|
invdir = 1 / rays_d |
|
sign = (invdir < 0).long() |
|
|
|
|
|
tmin = (bounds.index_select(0, sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] |
|
tmax = (bounds.index_select(0, 1 - sign[..., 0])[..., 0] - rays_o[..., 0]) * invdir[..., 0] |
|
|
|
|
|
tymin = (bounds.index_select(0, sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] |
|
tymax = (bounds.index_select(0, 1 - sign[..., 1])[..., 1] - rays_o[..., 1]) * invdir[..., 1] |
|
|
|
|
|
is_valid[torch.logical_or(tmin > tymax, tymin > tmax)] = False |
|
|
|
|
|
tmin = torch.max(tmin, tymin) |
|
tmax = torch.min(tmax, tymax) |
|
|
|
|
|
tzmin = (bounds.index_select(0, sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] |
|
tzmax = (bounds.index_select(0, 1 - sign[..., 2])[..., 2] - rays_o[..., 2]) * invdir[..., 2] |
|
|
|
|
|
is_valid[torch.logical_or(tmin > tzmax, tzmin > tmax)] = False |
|
|
|
|
|
tmin = torch.max(tmin, tzmin) |
|
tmax = torch.min(tmax, tzmax) |
|
|
|
|
|
tmin[torch.logical_not(is_valid)] = -1 |
|
tmax[torch.logical_not(is_valid)] = -2 |
|
|
|
return tmin.reshape(*o_shape[:-1], 1), tmax.reshape(*o_shape[:-1], 1) |
|
|
|
def linspace(start: torch.Tensor, stop: torch.Tensor, num: int): |
|
""" |
|
Creates a tensor of shape [num, *start.shape] whose values are evenly spaced from start to end, inclusive. |
|
Replicates but the multi-dimensional bahaviour of numpy.linspace in PyTorch. |
|
""" |
|
|
|
steps = torch.arange(num, dtype=torch.float32, device=start.device) / (num - 1) |
|
|
|
|
|
|
|
|
|
for i in range(start.ndim): |
|
steps = steps.unsqueeze(-1) |
|
|
|
|
|
out = start[None] + steps * (stop - start)[None] |
|
|
|
return out |
|
|
|
def generate_planes(): |
|
""" |
|
Defines planes by the three vectors that form the "axes" of the |
|
plane. Should work with arbitrary number of planes and planes of |
|
arbitrary orientation. |
|
""" |
|
return torch.tensor([[[1, 0, 0], |
|
[0, 1, 0], |
|
[0, 0, 1]], |
|
[[1, 0, 0], |
|
[0, 0, 1], |
|
[0, 1, 0]], |
|
[[0, 0, 1], |
|
[1, 0, 0], |
|
[0, 1, 0]]], dtype=torch.float32) |
|
|
|
def project_onto_planes(planes, coordinates): |
|
""" |
|
Does a projection of a 3D point onto a batch of 2D planes, |
|
returning 2D plane coordinates. |
|
Takes plane axes of shape n_planes, 3, 3 |
|
# Takes coordinates of shape N, M, 3 |
|
# returns projections of shape N*n_planes, M, 2 |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
N, M, _ = coordinates.shape |
|
xy_coords = coordinates[..., [0, 1]] |
|
yz_coords = coordinates[..., [1, 2]] |
|
zx_coords = coordinates[..., [2, 0]] |
|
return torch.stack([xy_coords, yz_coords, zx_coords], dim=1).reshape(N*3, M, 2) |
|
|
|
def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None): |
|
assert padding_mode == 'zeros' |
|
N, n_planes, C, H, W = plane_features.shape |
|
_, M, _ = coordinates.shape |
|
plane_features = plane_features.view(N*n_planes, C, H, W) |
|
|
|
coordinates = (2/box_warp) * coordinates |
|
|
|
projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1) |
|
|
|
output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C) |
|
return output_features |
|
|
|
def sample_from_3dgrid(grid, coordinates): |
|
""" |
|
Expects coordinates in shape (batch_size, num_points_per_batch, 3) |
|
Expects grid in shape (1, channels, H, W, D) |
|
(Also works if grid has batch size) |
|
Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels) |
|
""" |
|
batch_size, n_coords, n_dims = coordinates.shape |
|
sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1), |
|
coordinates.reshape(batch_size, 1, 1, -1, n_dims), |
|
mode='bilinear', padding_mode='zeros', align_corners=False) |
|
N, C, H, W, D = sampled_features.shape |
|
sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C) |
|
return sampled_features |
|
|
|
class FullyConnectedLayer(nn.Module): |
|
def __init__(self, |
|
in_features, |
|
out_features, |
|
bias = True, |
|
activation = 'linear', |
|
lr_multiplier = 1, |
|
bias_init = 0, |
|
): |
|
super().__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.activation = activation |
|
|
|
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier) |
|
self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None |
|
self.weight_gain = lr_multiplier / np.sqrt(in_features) |
|
self.bias_gain = lr_multiplier |
|
|
|
def forward(self, x): |
|
w = self.weight.to(x.dtype) * self.weight_gain |
|
b = self.bias |
|
if b is not None: |
|
b = b.to(x.dtype) |
|
if self.bias_gain != 1: |
|
b = b * self.bias_gain |
|
|
|
if self.activation == 'linear' and b is not None: |
|
x = torch.addmm(b.unsqueeze(0), x, w.t()) |
|
else: |
|
x = x.matmul(w.t()) |
|
x = bias_act.bias_act(x, b, act=self.activation) |
|
return x |
|
|
|
def extra_repr(self): |
|
return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}' |
|
|
|
class TriPlane_Decoder(nn.Module): |
|
def __init__(self, dim=12, width=128): |
|
super().__init__() |
|
self.net = torch.nn.Sequential( |
|
FullyConnectedLayer(dim, width), |
|
torch.nn.Softplus(), |
|
FullyConnectedLayer(width, width), |
|
torch.nn.Softplus(), |
|
FullyConnectedLayer(width, 1 + 3) |
|
) |
|
|
|
def forward(self, sampled_features): |
|
sampled_features = sampled_features.mean(1) |
|
x = sampled_features |
|
|
|
N, M, C = x.shape |
|
x = x.view(N*M, C) |
|
|
|
x = self.net(x) |
|
x = x.view(N, M, -1) |
|
rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 |
|
sigma = x[..., 0:1] |
|
return {'rgb': rgb, 'sigma': sigma} |
|
|
|
class Renderer_TriPlane(nn.Module): |
|
def __init__(self, rgbnet_dim=18, rgbnet_width=128): |
|
super(Renderer_TriPlane, self).__init__() |
|
self.decoder = TriPlane_Decoder(dim=rgbnet_dim//3, width=rgbnet_width) |
|
self.ray_marcher = MipRayMarcher2() |
|
self.plane_axes = generate_planes() |
|
|
|
def forward(self, planes, ray_origins, ray_directions, rendering_options, whole_img=False): |
|
self.plane_axes = self.plane_axes.to(ray_origins.device) |
|
|
|
ray_start, ray_end = get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp']) |
|
is_ray_valid = ray_end > ray_start |
|
if torch.any(is_ray_valid).item(): |
|
ray_start[~is_ray_valid] = ray_start[is_ray_valid].min() |
|
ray_end[~is_ray_valid] = ray_start[is_ray_valid].max() |
|
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling']) |
|
|
|
batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape |
|
|
|
|
|
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) |
|
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3) |
|
|
|
|
|
out = self.run_model(planes, self.decoder, sample_coordinates, sample_directions, rendering_options) |
|
colors_coarse = out['rgb'] |
|
densities_coarse = out['sigma'] |
|
colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1]) |
|
densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1) |
|
|
|
|
|
N_importance = rendering_options['depth_resolution_importance'] |
|
if N_importance > 0: |
|
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) |
|
|
|
depths_fine = self.sample_importance(depths_coarse, weights, N_importance) |
|
|
|
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3) |
|
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3) |
|
|
|
out = self.run_model(planes, self.decoder, sample_coordinates, sample_directions, rendering_options) |
|
colors_fine = out['rgb'] |
|
densities_fine = out['sigma'] |
|
colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1]) |
|
densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1) |
|
|
|
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse, |
|
depths_fine, colors_fine, densities_fine) |
|
|
|
|
|
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options) |
|
else: |
|
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options) |
|
|
|
|
|
if whole_img: |
|
H = W = int(ray_origins.shape[1] ** 0.5) |
|
rgb_final = rgb_final.permute(0, 2, 1).reshape(-1, 3, H, W).contiguous() |
|
depth_final = depth_final.permute(0, 2, 1).reshape(-1, 1, H, W).contiguous() |
|
depth_final = (depth_final - depth_final.min()) / (depth_final.max() - depth_final.min()) |
|
depth_final = depth_final.repeat(1, 3, 1, 1) |
|
|
|
rgb_final = (rgb_final + 1) / 2. |
|
weights = weights.sum(2).reshape(rgb_final.shape[0], rgb_final.shape[2], rgb_final.shape[3]) |
|
return { |
|
'rgb_marched': rgb_final, |
|
'depth_final': depth_final, |
|
'weights': weights, |
|
} |
|
else: |
|
rgb_final = (rgb_final + 1) / 2. |
|
return { |
|
'rgb_marched': rgb_final, |
|
'depth_final': depth_final, |
|
} |
|
|
|
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options): |
|
sampled_features = sample_from_planes(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp']) |
|
|
|
out = decoder(sampled_features) |
|
if options.get('density_noise', 0) > 0: |
|
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise'] |
|
return out |
|
|
|
def sort_samples(self, all_depths, all_colors, all_densities): |
|
_, indices = torch.sort(all_depths, dim=-2) |
|
all_depths = torch.gather(all_depths, -2, indices) |
|
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) |
|
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) |
|
return all_depths, all_colors, all_densities |
|
|
|
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2): |
|
all_depths = torch.cat([depths1, depths2], dim = -2) |
|
all_colors = torch.cat([colors1, colors2], dim = -2) |
|
all_densities = torch.cat([densities1, densities2], dim = -2) |
|
|
|
_, indices = torch.sort(all_depths, dim=-2) |
|
all_depths = torch.gather(all_depths, -2, indices) |
|
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1])) |
|
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1)) |
|
|
|
return all_depths, all_colors, all_densities |
|
|
|
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False): |
|
""" |
|
Return depths of approximately uniformly spaced samples along rays. |
|
""" |
|
N, M, _ = ray_origins.shape |
|
if disparity_space_sampling: |
|
depths_coarse = torch.linspace(0, |
|
1, |
|
depth_resolution, |
|
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) |
|
depth_delta = 1/(depth_resolution - 1) |
|
depths_coarse += torch.rand_like(depths_coarse) * depth_delta |
|
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse) |
|
else: |
|
if type(ray_start) == torch.Tensor: |
|
depths_coarse = linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) |
|
depth_delta = (ray_end - ray_start) / (depth_resolution - 1) |
|
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] |
|
else: |
|
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1) |
|
depth_delta = (ray_end - ray_start)/(depth_resolution - 1) |
|
depths_coarse += torch.rand_like(depths_coarse) * depth_delta |
|
|
|
return depths_coarse |
|
|
|
def sample_importance(self, z_vals, weights, N_importance): |
|
""" |
|
Return depths of importance sampled points along rays. See NeRF importance sampling for more. |
|
""" |
|
with torch.no_grad(): |
|
batch_size, num_rays, samples_per_ray, _ = z_vals.shape |
|
|
|
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray) |
|
weights = weights.reshape(batch_size * num_rays, -1) |
|
|
|
|
|
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1) |
|
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze() |
|
weights = weights + 0.01 |
|
|
|
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) |
|
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1], |
|
N_importance).detach().reshape(batch_size, num_rays, N_importance, 1) |
|
return importance_z_vals |
|
|
|
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5): |
|
""" |
|
Sample @N_importance samples from @bins with distribution defined by @weights. |
|
Inputs: |
|
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2" |
|
weights: (N_rays, N_samples_) |
|
N_importance: the number of samples to draw from the distribution |
|
det: deterministic or not |
|
eps: a small number to prevent division by zero |
|
Outputs: |
|
samples: the sampled samples |
|
""" |
|
N_rays, N_samples_ = weights.shape |
|
weights = weights + eps |
|
pdf = weights / torch.sum(weights, -1, keepdim=True) |
|
cdf = torch.cumsum(pdf, -1) |
|
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) |
|
|
|
|
|
if det: |
|
u = torch.linspace(0, 1, N_importance, device=bins.device) |
|
u = u.expand(N_rays, N_importance) |
|
else: |
|
u = torch.rand(N_rays, N_importance, device=bins.device) |
|
u = u.contiguous() |
|
|
|
inds = torch.searchsorted(cdf, u, right=True) |
|
below = torch.clamp_min(inds-1, 0) |
|
above = torch.clamp_max(inds, N_samples_) |
|
|
|
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance) |
|
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2) |
|
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2) |
|
|
|
denom = cdf_g[...,1]-cdf_g[...,0] |
|
denom[denom<eps] = 1 |
|
|
|
|
|
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0]) |
|
return samples |
|
|