FrozenBurning
single view to 3D init release
81ecb2b
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.utils import BufferDict, Conv2dELR
class BGModel(nn.Module):
def __init__(self, width, height, allcameras, bgdict=True, demod=True, trainstart=0):
super(BGModel, self).__init__()
self.allcameras = allcameras
self.trainstart = trainstart
if bgdict:
self.bg = BufferDict({k: torch.ones(3, height, width) for k in allcameras})
else:
self.bg = None
if trainstart > -1:
self.mlp1 = nn.Sequential(
Conv2dELR(60+24, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None))
self.mlp2 = nn.Sequential(
Conv2dELR(60+24+256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 256, 1, 1, 0, demod="demod" if demod else None), nn.LeakyReLU(0.2),
Conv2dELR( 256, 3, 1, 1, 0, demod=False))
def forward(self, bg=None, camindex=None, raypos=None, rayposend=None,
raydir=None, samplecoords=None, trainiter=-1, **kwargs):
if self.trainstart > -1 and trainiter >= self.trainstart:# and camindex is not None:
# generate position encoding
posenc = torch.cat([
torch.sin(2 ** i * np.pi * rayposend[:, :, :, :])
for i in range(10)] + [
torch.cos(2 ** i * np.pi * rayposend[:, :, :, :])
for i in range(10)], dim=-1).permute(0, 3, 1, 2)
direnc = torch.cat([
torch.sin(2 ** i * np.pi * raydir[:, :, :, :])
for i in range(4)] + [
torch.cos(2 ** i * np.pi * raydir[:, :, :, :])
for i in range(4)], dim=-1).permute(0, 3, 1, 2)
decout = torch.cat([posenc, direnc], dim=1)
decout = self.mlp1(decout)
decout = torch.cat([posenc, direnc, decout], dim=1)
decout = self.mlp2(decout)
else:
decout = None
if bg is None and self.bg is not None and camindex is not None:
bg = torch.stack([self.bg[self.allcameras[camindex[i].item()]] for i in range(camindex.size(0))], dim=0)
else:
bg = None
if bg is not None and samplecoords is not None:
if samplecoords.size()[1:3] != bg.size()[2:4]:
bg = F.grid_sample(bg, samplecoords, align_corners=False)
if decout is not None:
if bg is not None:
return F.softplus(bg + decout)
else:
return F.softplus(decout)
else:
if bg is not None:
return F.softplus(bg)
else:
return None