Spaces:
Sleeping
Sleeping
Update qa_summary.py
Browse files- qa_summary.py +5 -5
qa_summary.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
@spaces.GPU(duration=60)
|
6 |
-
def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
7 |
|
8 |
if llm_name == 'solar':
|
9 |
tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0", use_fast=True)
|
@@ -17,7 +17,7 @@ def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_fast=True)
|
18 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
19 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
20 |
-
#device_map="auto",
|
21 |
device_map="cuda",
|
22 |
torch_dtype=torch.float16,
|
23 |
)
|
@@ -28,7 +28,7 @@ def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
|
28 |
"microsoft/Phi-3-mini-128k-instruct",
|
29 |
device_map="auto",
|
30 |
torch_dtype="auto",
|
31 |
-
trust_remote_code=
|
32 |
)
|
33 |
|
34 |
template_texts =""
|
@@ -42,8 +42,8 @@ def generate_answer(llm_name, texts, query, queries, mode='validate'):
|
|
42 |
elif mode == 'h_summarize':
|
43 |
conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
|
44 |
elif mode == "multi_summarize":
|
45 |
-
|
46 |
-
|
47 |
|
48 |
|
49 |
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
@spaces.GPU(duration=60)
|
6 |
+
def generate_answer(llm_name, texts, query, queries, response_lang, mode='validate'):
|
7 |
|
8 |
if llm_name == 'solar':
|
9 |
tokenizer = AutoTokenizer.from_pretrained("Upstage/SOLAR-10.7B-Instruct-v1.0", use_fast=True)
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2", use_fast=True)
|
18 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
19 |
"mistralai/Mistral-7B-Instruct-v0.2",
|
20 |
+
# device_map="auto",
|
21 |
device_map="cuda",
|
22 |
torch_dtype=torch.float16,
|
23 |
)
|
|
|
28 |
"microsoft/Phi-3-mini-128k-instruct",
|
29 |
device_map="auto",
|
30 |
torch_dtype="auto",
|
31 |
+
trust_remote_code=True,
|
32 |
)
|
33 |
|
34 |
template_texts =""
|
|
|
42 |
elif mode == 'h_summarize':
|
43 |
conversation = [ {'role': 'user', 'content': f'The documents below describe a developing disaster event. Based on these documents, write a brief summary in the form of a paragraph, highlighting the most crucial information. \nDocuments: {template_texts}'} ]
|
44 |
elif mode == "multi_summarize":
|
45 |
+
conversation = [ {'role': 'user', 'content': f"""For the following queries and documents, in a brief paragraph try to answer the given queries based on the documents.
|
46 |
+
Then, return the top 5 documents as provided that answer the queries.\nQueries: {queries} \nDocuments: {template_texts}. Give your response in {response_lang} language"""} ]
|
47 |
|
48 |
|
49 |
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|