Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,11 @@ from statistics import mean
|
|
9 |
|
10 |
HFTOKEN = os.environ["HF_TOKEN"]
|
11 |
|
12 |
-
def
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
if text_field not in df.columns:
|
16 |
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
@@ -91,7 +94,7 @@ with gr.Blocks() as demo:
|
|
91 |
# T4.5 Relevance Classifier Demo
|
92 |
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
93 |
Usage:\n
|
94 |
-
|
95 |
-Next, type the name of the text column.\n
|
96 |
-Then, choose a BERT classifier model from the drop down.\n
|
97 |
-Finally, click the 'start prediction' buttton.\n
|
@@ -102,7 +105,7 @@ with gr.Blocks() as demo:
|
|
102 |
""")
|
103 |
with gr.Row(equal_height=True):
|
104 |
with gr.Column(scale=4):
|
105 |
-
file_input = gr.File(label="Upload CSV File")
|
106 |
|
107 |
with gr.Column(scale=6):
|
108 |
text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
@@ -150,7 +153,7 @@ with gr.Blocks() as demo:
|
|
150 |
data_eval = gr.DataFrame(visible=False)
|
151 |
|
152 |
predict_button.click(
|
153 |
-
|
154 |
inputs=[file_input, text_field, event_model],
|
155 |
outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence, num_posts, data])
|
156 |
accuracy_button.click(
|
|
|
9 |
|
10 |
HFTOKEN = os.environ["HF_TOKEN"]
|
11 |
|
12 |
+
def load_and_classify_csv(file, text_field, event_model):
|
13 |
+
if ".csv" in file.name:
|
14 |
+
df = pd.read_csv(file.name)
|
15 |
+
else ".tsv" in file.name:
|
16 |
+
df = pd.read_table(file.name)
|
17 |
|
18 |
if text_field not in df.columns:
|
19 |
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
|
|
|
94 |
# T4.5 Relevance Classifier Demo
|
95 |
This is a demo created to explore floods and wildfire classification in social media posts.\n
|
96 |
Usage:\n
|
97 |
+
(1.) Upload .tsv data file (must contain a text column with social media posts).\n
|
98 |
-Next, type the name of the text column.\n
|
99 |
-Then, choose a BERT classifier model from the drop down.\n
|
100 |
-Finally, click the 'start prediction' buttton.\n
|
|
|
105 |
""")
|
106 |
with gr.Row(equal_height=True):
|
107 |
with gr.Column(scale=4):
|
108 |
+
file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
|
109 |
|
110 |
with gr.Column(scale=6):
|
111 |
text_field = gr.Textbox(label="Text field name", value="tweet_text")
|
|
|
153 |
data_eval = gr.DataFrame(visible=False)
|
154 |
|
155 |
predict_button.click(
|
156 |
+
load_and_classify_csv,
|
157 |
inputs=[file_input, text_field, event_model],
|
158 |
outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence, num_posts, data])
|
159 |
accuracy_button.click(
|