Spaces:
Sleeping
Sleeping
Update classifier.py
Browse files- classifier.py +5 -2
classifier.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import spaces
|
2 |
from transformers import pipeline as tpipeline
|
3 |
-
from optimum.pipelines import pipeline as opipeline
|
|
|
4 |
|
5 |
#@spaces.GPU(duration=60)
|
6 |
def classify(tweet, event_model, hftoken, threshold):
|
7 |
results = {"text": None, "event": None, "score": None}
|
|
|
|
|
8 |
|
9 |
# event type prediction with transformers pipeline
|
10 |
-
event_predictor = tpipeline(task="text-classification", model=event_model
|
11 |
batch_size=512, token=hftoken, device="cpu")
|
12 |
tokenizer_kwargs = {'padding': True, 'truncation': True, 'max_length': 512}
|
13 |
prediction = event_predictor(tweet, **tokenizer_kwargs)[0]
|
|
|
1 |
import spaces
|
2 |
from transformers import pipeline as tpipeline
|
3 |
+
# from optimum.pipelines import pipeline as opipeline
|
4 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification
|
5 |
|
6 |
#@spaces.GPU(duration=60)
|
7 |
def classify(tweet, event_model, hftoken, threshold):
|
8 |
results = {"text": None, "event": None, "score": None}
|
9 |
+
|
10 |
+
model = ORTModelForSequenceClassification.from_pretrained(event_model)
|
11 |
|
12 |
# event type prediction with transformers pipeline
|
13 |
+
event_predictor = tpipeline(task="text-classification", model=model, #model=event_model
|
14 |
batch_size=512, token=hftoken, device="cpu")
|
15 |
tokenizer_kwargs = {'padding': True, 'truncation': True, 'max_length': 512}
|
16 |
prediction = event_predictor(tweet, **tokenizer_kwargs)[0]
|