jayebaku's picture
Update _app.py
4da2d54 verified
raw
history blame contribute delete
12.7 kB
import os
import time
import gradio as gr
import pandas as pd
from classifier import classify
from statistics import mean
# from genra_incremental import GenraPipeline
from qa_summary import generate_answer
HFTOKEN = os.environ["HF_TOKEN"]
def load_and_classify_csv(file, text_field, event_model):
filepath = file.name
if ".csv" in filepath:
df = pd.read_csv(filepath)
else:
df = pd.read_table(filepath)
if text_field not in df.columns:
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.")
labels, scores = [], []
for post in df[text_field].to_list():
res = classify(post, event_model, HFTOKEN)
labels.append(res["event"])
scores.append(res["score"])
df["model_label"] = labels
df["model_score"] = scores
model_confidence = round(mean(scores), 5)
fire_related = gr.CheckboxGroup(choices=df[df["model_label"]=="fire"][text_field].to_list()) #fires
flood_related = gr.CheckboxGroup(choices=df[df["model_label"]=="flood"][text_field].to_list())
not_related = gr.CheckboxGroup(choices=df[df["model_label"]=="none"][text_field].to_list())
return flood_related, fire_related, not_related, model_confidence, len(df[text_field].to_list()), df
def calculate_accuracy(flood_selections, fire_selections, none_selections, num_posts, text_field, data_df):
posts = data_df[text_field].to_list()
selections = flood_selections + fire_selections + none_selections
eval = []
for post in posts:
if post in selections:
eval.append("incorrect")
else:
eval.append("correct")
data_df["model_eval"] = eval
incorrect = len(selections)
correct = num_posts - incorrect
accuracy = (correct/num_posts)*100
data_df.to_csv("output.csv")
return incorrect, correct, accuracy, data_df, gr.DownloadButton(label=f"Download CSV", value="output.csv", visible=True)
def init_queries(history):
history = history or []
if not history:
history = [
"What areas are being evacuated?",
"What areas are predicted to be impacted?",
"What areas are without power?",
"What barriers are hindering response efforts?",
"What events have been canceled?",
"What preparations are being made?",
"What regions have announced a state of emergency?",
"What roads are blocked / closed?",
"What services have been closed?",
"What warnings are currently in effect?",
"Where are emergency services deployed?",
"Where are emergency services needed?",
"Where are evacuations needed?",
"Where are people needing rescued?",
"Where are recovery efforts taking place?",
"Where has building or infrastructure damage occurred?",
"Where has flooding occured?"
"Where are volunteers being requested?",
"Where has road damage occured?",
"What area has the wildfire burned?",
"Where have homes been damaged or destroyed?"]
return gr.CheckboxGroup(choices=history), history
def add_query(to_add, history):
if to_add not in history:
history.append(to_add)
return gr.CheckboxGroup(choices=history), history
# def qa_process(selected_queries, qa_llm_model, aggregator,
# batch_size, topk, text_field, data_df):
# emb_model = 'multi-qa-mpnet-base-dot-v1'
# contexts = []
# queries_df = pd.DataFrame({'id':[j for j in range(len(selected_queries))],'query': selected_queries})
# qa_input_df = data_df[data_df["model_label"] != "none"].reset_index()
# tweets_df = qa_input_df[[text_field]]
# tweets_df.reset_index(inplace=True)
# tweets_df.rename(columns={"index": "order", text_field: "text"},inplace=True)
# gr.Info("Loading GENRA pipeline....")
# genra = GenraPipeline(qa_llm_model, emb_model, aggregator, contexts)
# gr.Info("Waiting for data...")
# batches = [tweets_df[i:i+batch_size] for i in range(0,len(tweets_df),batch_size)]
# genra_answers = []
# summarize_batch = True
# for batch_number, tweets in enumerate(batches):
# gr.Info(f"Populating index for batch {batch_number}")
# genra.qa_indexer.index_dataframe(tweets)
# gr.Info(f"Performing retrieval for batch {batch_number}")
# genra.retrieval(batch_number, queries_df, topk, summarize_batch)
# gr.Info("Processed all batches!")
# gr.Info("Getting summary...")
# summary = genra.summarize_history(queries_df)
# gr.Info("Preparing results...")
# results = genra.answers_store
# final_answers, q_a = [], []
# for q, g_answers in results.items():
# for answer in g_answers:
# final_answers.append({'question':q, "tweets":answer['tweets'], "batch":answer['batch_number'], "summary":answer['summary'] })
# for t in answer['tweets']:
# q_a.append((q,t))
# answers_df = pd.DataFrame.from_dict(final_answers)
# q_a = list(set(q_a))
# q_a_df = pd.DataFrame(q_a, columns =['question', 'tweet'])
# q_a_df = q_a_df.sort_values(by=["question"], ascending=False)
# return q_a_df, answers_df, summary
def qa_summarise(selected_queries, qa_llm_model, text_field, response_lang, data_df):
qa_input_df = data_df[data_df["model_label"] != "none"].reset_index()
texts = qa_input_df[text_field].to_list()
summary = generate_answer(qa_llm_model,
texts,
selected_queries[0],
selected_queries,
response_lang,
mode="multi_summarize")
doc_df = pd.DataFrame()
doc_df["number"] = [i+1 for i in range(len(texts))]
doc_df["text"] = texts
return summary, doc_df
with gr.Blocks() as demo:
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier",
"jayebaku/distilbert-base-multilingual-cased-weather-classifier-2",
"jayebaku/twitter-xlm-roberta-base-crexdata-relevance-classifier",
"jayebaku/twhin-bert-base-crexdata-relevance-classifier"]
with gr.Tab("Event Type Classification"):
gr.Markdown(
"""
# T4.5 Relevance Classifier Demo
This is a demo created to explore floods and wildfire classification in social media posts.\n
Usage:\n
- Upload .tsv data file (must contain a text column with social media posts).\n
- Next, type the name of the text column.\n
- Then, choose a BERT classifier model from the drop down.\n
- Finally, click the 'start prediction' buttton.\n
Evaluation:\n
- To evaluate the model's accuracy select the INCORRECT classifications using the checkboxes in front of each post.\n
- Then, click on the 'Calculate Accuracy' button.\n
- Then, click on the 'Download data as CSV' to get the classifications and evaluation data as a .csv file.
""")
with gr.Row(equal_height=True):
with gr.Column(scale=4):
file_input = gr.File(label="Upload CSV or TSV File", file_types=['.tsv', '.csv'])
with gr.Column(scale=6):
text_field = gr.Textbox(label="Text field name", value="tweet_text")
event_model = gr.Dropdown(event_models, label="Select classification model")
predict_button = gr.Button("Start Prediction")
with gr.Row(): # XXX confirm this is not a problem later --equal_height=True
with gr.Column():
gr.Markdown("""### Flood-related""")
flood_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
with gr.Column():
gr.Markdown("""### Fire-related""")
fire_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
with gr.Column():
gr.Markdown("""### None""")
none_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications", interactive=True)
with gr.Row(equal_height=True):
with gr.Column(scale=5):
gr.Markdown(r"""
Accuracy: is the model's ability to make correct predicitons.
It is the fraction of correct prediction out of the total predictions.
$$
\text{Accuracy} = \frac{\text{Correct predictions}}{\text{All predictions}} * 100
$$
Model Confidence: is the mean probabilty of each case
belonging to their assigned classes. A value of 1 is best.
""", latex_delimiters=[{ "left": "$$", "right": "$$", "display": True }])
gr.Markdown("\n\n\n")
model_confidence = gr.Number(label="Model Confidence")
with gr.Column(scale=5):
correct = gr.Number(label="Number of correct classifications")
incorrect = gr.Number(label="Number of incorrect classifications")
accuracy = gr.Number(label="Model Accuracy (%)")
accuracy_button = gr.Button("Calculate Accuracy")
download_csv = gr.DownloadButton(visible=False)
num_posts = gr.Number(visible=False)
data = gr.DataFrame(visible=False)
data_eval = gr.DataFrame(visible=False)
predict_button.click(
load_and_classify_csv,
inputs=[file_input, text_field, event_model],
outputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, model_confidence, num_posts, data])
accuracy_button.click(
calculate_accuracy,
inputs=[flood_checkbox_output, fire_checkbox_output, none_checkbox_output, num_posts, text_field, data],
outputs=[incorrect, correct, accuracy, data_eval, download_csv])
qa_tab = gr.Tab("Question Answering")
with qa_tab:
# XXX Add some button disabling here, if the classification process is not completed first XXX
gr.Markdown(
"""
# Question Answering Demo
This section uses RAG to answer questions about the relevant social media posts identified by the relevance classifier\n
Usage:\n
- Select queries from predefined\n
- Parameters for QA can be editted in sidebar\n
""")
with gr.Accordion("Parameters", open=False):
with gr.Row(equal_height=True):
with gr.Column():
qa_llm_model = gr.Dropdown(["mistral", "solar", "phi3mini"], label="QA model", value="phi3mini", interactive=True)
aggregator = gr.Dropdown(["linear", "outrank"], label="Aggregation method", value="linear", interactive=True)
with gr.Column():
batch_size = gr.Slider(50, 500, value=150, step=1, label="Batch size", info="Choose between 50 and 500", interactive=True)
topk = gr.Slider(1, 10, value=5, step=1, label="Number of results to retrieve", info="Choose between 1 and 10", interactive=True)
response_lang = gr.Dropdown(["english", "german", "catalan", "spanish"], label="Response language", value="english", interactive=True)
selected_queries = gr.CheckboxGroup(label="Select at least one query using the checkboxes", interactive=True)
queries_state = gr.State()
qa_tab.select(init_queries, inputs=queries_state, outputs=[selected_queries, queries_state])
query_inp = gr.Textbox(label="Add custom queries like the one above, one at a time")
addqry_button = gr.Button("Add to queries")
qa_button = gr.Button("Start QA")
hsummary = gr.Textbox(label="Summary")
qa_df = gr.DataFrame()
# answers_df = gr.DataFrame()
addqry_button.click(add_query, inputs=[query_inp, queries_state], outputs=[selected_queries, queries_state])
# qa_button.click(qa_process,
# inputs=[selected_queries, qa_llm_model, aggregator, batch_size, topk, text_field, data],
# outputs=[qa_df, answers_df, hsummary])
qa_button.click(qa_summarise,
inputs=[selected_queries, qa_llm_model, text_field, response_lang, data],
outputs=[hsummary, qa_df])
demo.launch()