Spaces:
Sleeping
Sleeping
import time | |
import gradio as gr | |
import pandas as pd | |
def load_and_analyze_csv(file, text_field): | |
df = pd.read_csv(file.name) | |
if text_field not in df.columns: | |
raise gr.Error(f"Error: Enter text column'{text_field}' not in CSV file.") | |
fire_related = gr.CheckboxGroup(choices=df['text'].to_list()[:5]) | |
flood_related = gr.CheckboxGroup(choices=df['text'].to_list()[:7]) | |
not_related = gr.CheckboxGroup(choices=df['text'].to_list()) | |
time.sleep(5) | |
return fire_related, flood_related, not_related | |
def analyze_selected_texts(selections): | |
selected_texts = selections | |
analysis_results = [f"Word Count: {len(text.split())}" for text in selected_texts] | |
result_df = pd.DataFrame({"Selected Text": selected_texts, "Analysis": analysis_results}) | |
return result_df | |
with gr.Blocks() as demo: | |
event_models = ["jayebaku/distilbert-base-multilingual-cased-crexdata-relevance-classifier"] | |
with gr.Tab("Event Type Classification"): | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=4): | |
file_input = gr.File(label="Upload CSV File") | |
with gr.Column(scale=6): | |
text_field = gr.Textbox(label="Text field name", value="text") | |
event_model = gr.Dropdown(event_models, label="Select classification model") | |
predict_button = gr.Button("Start Prediction") | |
with gr.Row(): # XXX confirm this is not a problem later --equal_height=True | |
with gr.Column(): | |
gr.Markdown("""### Flood-related""") | |
fire_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications") | |
with gr.Column(): | |
gr.Markdown("""### Fire-related""") | |
flood_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications") | |
with gr.Column(): | |
gr.Markdown("""### None""") | |
none_checkbox_output = gr.CheckboxGroup(label="Select ONLY incorrect classifications") | |
predict_button.click(load_and_analyze_csv, inputs=[file_input, text_field], outputs=[fire_checkbox_output, flood_checkbox_output, none_checkbox_output]) | |
with gr.Tab("Question Answering"): | |
# XXX Add some button disabling here, if the classification process is not completed first XXX | |
analysis_button = gr.Button("Analyze Selected Texts") | |
analysis_output = gr.DataFrame(headers=["Selected Text", "Analysis"]) | |
analysis_button.click(analyze_selected_texts, inputs=fire_checkbox_output, outputs=analysis_output) | |
demo.launch() |