Spaces:
Runtime error
Runtime error
File size: 16,797 Bytes
c79086f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
""" Basic Agent Evaluation Runner"""
import os
import gradio as gr
import requests
import pandas as pd
import concurrent.futures
import os
import gradio as gr
import requests
import pandas as pd
import os
from agents import get_manager_agent
from typing import Optional
import os
import time
import requests
from typing import Optional
from pathlib import Path
# File cache to avoid repeated downloads
FILE_CACHE_DIR = Path("./cache")
FILE_CACHE_DIR.mkdir(exist_ok=True, parents=True)
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class FileCache:
"""Handles caching of files to avoid repeated downloads."""
@staticmethod
def get_cached_path(file_name: str) -> Optional[Path]:
"""Check if file is already cached."""
cache_path = FILE_CACHE_DIR / file_name
return cache_path if cache_path.exists() else None
@staticmethod
def cache_file(file_name: str, content: bytes) -> Path:
"""Cache file content."""
cache_path = FILE_CACHE_DIR / file_name
with open(cache_path, 'wb') as f:
f.write(content)
return cache_path
@staticmethod
def get_file_extension(filename: str) -> str:
"""Extract file extension from filename."""
return Path(filename).suffix
class FileManager:
"""Handles file retrieval and caching."""
@staticmethod
def get_file_by_task_id(task_id: str, file_name: str) -> Optional[Path]:
"""
Fetch file associated with task ID and cache it.
Args:
task_id: The ID of the task
file_name: The name of the file
Returns:
Path to the cached file, or None if no file exists
"""
# Check cache first
cached_path = FileCache.get_cached_path(file_name)
if cached_path:
return cached_path
# If not cached, download
url = f"{DEFAULT_API_URL}/files/{task_id}"
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
# Cache the file
content = response.content
cached_path = FileCache.cache_file(file_name, content)
return cached_path
except Exception as e:
print(f"Error fetching file for task {task_id}: {e}")
return None
# (Keep Constants as is)
# --- Constants ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.agent = get_manager_agent()
self.verbose = True
def __call__(self, task_id: str, question: str, file_name: str = None) -> str:
"""
Process a GAIA benchmark question and return the answer
Args:
question: The question to answer
task_file_path: Optional path to a file associated with the question
Returns:
The answer to the question
"""
task_file_path = None
if file_name:
task_file_path = FileManager.get_file_by_task_id(task_id, file_name)
try:
if self.verbose:
print(f"Processing question: {question}")
if task_file_path:
print(f"With associated file: {task_file_path}")
# Create a context with file information if available
context = question
# If there's a file, read it and include its content in the context
if task_file_path:
context = f"""
Question: {question}
This question has an associated file. File is already downloaded at:
{task_file_path}
Analyze the file content above to answer the question using tools.
"""
# Check for special cases that need specific formatting
# Reversed text questions
if question.startswith(".") or ".rewsna eht sa" in question:
context = f"""
This question appears to be in reversed text. Here's the reversed version:
{question[::-1]}
Now answer the question above. Remember to format your answer exactly as requested.
"""
# Add a prompt to ensure precise answers
full_prompt = f"""{context}
When answering, provide ONLY the precise answer requested.
Do not include explanations, steps, reasoning, or additional text.
Be direct and specific. GAIA benchmark requires exact matching answers.
For example, if asked "What is the capital of France?", respond simply with "Paris".
"""
# Run the agent with the question
answer = self.agent.run(full_prompt)
# Clean up the answer to ensure it's in the expected format
# Remove common prefixes that models often add
answer = self._clean_answer(answer)
if self.verbose:
print(f"Generated answer: {answer}")
return answer
except Exception as e:
error_msg = f"Error answering question: {e}"
if self.verbose:
print(error_msg)
return error_msg
def _clean_answer(self, answer: any) -> str:
"""
Clean up the answer to remove common prefixes and formatting
that models often add but that can cause exact match failures.
Args:
answer: The raw answer from the model
Returns:
The cleaned answer as a string
"""
# Convert non-string types to strings
if not isinstance(answer, str):
# Handle numeric types (float, int)
if isinstance(answer, float):
# Format floating point numbers properly
# Check if it's an integer value in float form (e.g., 12.0)
if answer.is_integer():
formatted_answer = str(int(answer))
else:
# For currency values that might need formatting
if abs(answer) >= 1000:
formatted_answer = f"${answer:,.2f}"
else:
formatted_answer = str(answer)
return formatted_answer
elif isinstance(answer, int):
return str(answer)
else:
# For any other type
return str(answer)
# Now we know answer is a string, so we can safely use string methods
# Normalize whitespace
answer = answer.strip()
# Remove common prefixes and formatting that models add
prefixes_to_remove = [
"The answer is ",
"Answer: ",
"Final answer: ",
"The result is ",
"To answer this question: ",
"Based on the information provided, ",
"According to the information: ",
]
for prefix in prefixes_to_remove:
if answer.startswith(prefix):
answer = answer[len(prefix):].strip()
# Remove quotes if they wrap the entire answer
if (answer.startswith('"') and answer.endswith('"')) or (answer.startswith("'") and answer.endswith("'")):
answer = answer[1:-1].strip()
return answer
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them in parallel (up to 10 at a time),
submits all answers, and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent (modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# Helper function to process a single question
def process_question(item):
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
return None
try:
submitted_answer = BasicAgent()(task_id, question_text, file_name)
return {
"task_id": task_id,
"question": question_text,
"submitted_answer": submitted_answer,
"error": None
}
except Exception as e:
# raise e
print(f"Error running agent on task {task_id}: {e}")
return {
"task_id": task_id,
"question": question_text,
"submitted_answer": f"AGENT ERROR: {e}",
"error": str(e)
}
# 3. Run your Agent in parallel (up to 10 at a time)
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions with up to 10 in parallel...")
with concurrent.futures.ThreadPoolExecutor(max_workers=19) as executor:
# Submit all questions to the thread pool
future_to_item = {
executor.submit(process_question, item): item
for item in questions_data
}
# Collect results as they complete
for future in concurrent.futures.as_completed(future_to_item):
result = future.result()
if result is not None:
if result["error"] is None:
answers_payload.append({
"task_id": result["task_id"],
"submitted_answer": result["submitted_answer"]
})
results_log.append({
"Task ID": result["task_id"],
"Question": result["question"],
"Submitted Answer": result["submitted_answer"]
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
# save to csv
results_df.to_csv("results.csv", index=False)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |