Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
|
5 |
+
# Model and Tokenizer Setup
|
6 |
+
model_name = "unsloth/gemma-3-4b-it-unsloth-bnb-4bit"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
load_in_4bit=True,
|
11 |
+
device_map="auto",
|
12 |
+
torch_dtype=torch.bfloat16, #important for speed.
|
13 |
+
)
|
14 |
+
|
15 |
+
def generate_response(prompt):
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
17 |
+
outputs = model.generate(**inputs, max_new_tokens=256) # Adjust max_new_tokens as needed
|
18 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
+
return response
|
20 |
+
|
21 |
+
# Gradio Interface
|
22 |
+
iface = gr.Interface(
|
23 |
+
fn=generate_response,
|
24 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter your prompt here..."),
|
25 |
+
outputs=gr.Textbox(),
|
26 |
+
title="Gemma 3-4B Inference",
|
27 |
+
description="Run the unsloth/gemma-3-4b-it-unsloth-bnb-4bit model.",
|
28 |
+
)
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
iface.launch(server_name="0.0.0.0", server_port=7860) #important for spaces.
|