Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,105 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
'politics,news,sports,tech,science', # str representing input in 'Possible class names (comma-separated)' Textbox component
|
8 |
-
False, # bool representing input in 'Allow multiple true classes' Checkbox component
|
9 |
-
api_name="/predict"
|
10 |
-
)
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from keras.models import load_model
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
import nltk
|
6 |
+
import re
|
7 |
+
from nltk.corpus import stopwords
|
8 |
+
from nltk.tokenize import TweetTokenizer
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
11 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
12 |
|
13 |
+
import subprocess
|
14 |
|
15 |
+
# Command to execute
|
16 |
+
command = "git clone https://huggingface.co/lydiadida/lstmhatespeachdetection"
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Execute the command
|
19 |
+
try:
|
20 |
+
subprocess.run(command, shell=True, check=True)
|
21 |
+
print("Git clone command executed successfully.")
|
22 |
+
except subprocess.CalledProcessError as e:
|
23 |
+
print(f"Error executing git clone command: {e}")
|
24 |
|
25 |
+
# Load the LSTM model
|
26 |
+
model_path = "model.h5" # Set your model path here
|
27 |
+
lstm_model = load_lstm_model(model_path)
|
28 |
|
29 |
|
30 |
+
def clean_text(text):
|
31 |
+
# Remove stopwords
|
32 |
+
stop_words = set(stopwords.words('english'))
|
33 |
+
words = nltk.word_tokenize(text)
|
34 |
+
filtered_words = [word for word in words if word not in stop_words]
|
35 |
+
|
36 |
+
# Remove Twitter usernames
|
37 |
+
text = re.sub(r'@\w+', '', ' '.join(filtered_words))
|
38 |
+
|
39 |
+
# Remove URLs
|
40 |
+
text = re.sub(r'http\S+', '', text)
|
41 |
+
|
42 |
+
# Tokenize using TweetTokenizer
|
43 |
+
tokenizer = TweetTokenizer(preserve_case=True)
|
44 |
+
text = tokenizer.tokenize(text)
|
45 |
+
|
46 |
+
# Remove hashtag symbols
|
47 |
+
text = [word.replace('#', '') for word in text]
|
48 |
+
|
49 |
+
# Remove short words
|
50 |
+
text = ' '.join([word.lower() for word in text if len(word) > 2])
|
51 |
+
|
52 |
+
# Remove digits
|
53 |
+
text = re.sub(r'\d+', '', text)
|
54 |
+
|
55 |
+
# Remove non-alphanumeric characters
|
56 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
57 |
+
|
58 |
+
return text
|
59 |
|
60 |
+
|
61 |
+
def preprocess_text(text):
|
62 |
+
# Clean the text
|
63 |
+
cleaned_text = clean_text(text)
|
64 |
+
|
65 |
+
# Tokenize and pad sequences
|
66 |
+
token = Tokenizer()
|
67 |
+
token.fit_on_texts([cleaned_text])
|
68 |
+
text_sequences = token.texts_to_sequences([cleaned_text])
|
69 |
+
padded_sequences = pad_sequences(text_sequences, maxlen=100)
|
70 |
+
|
71 |
+
return padded_sequences
|
72 |
+
|
73 |
+
# Function to load the saved LSTM model
|
74 |
+
@st.cache(allow_output_mutation=True)
|
75 |
+
def load_lstm_model(model_path):
|
76 |
+
return load_model(model_path)
|
77 |
+
|
78 |
+
# Function to predict hate speech
|
79 |
+
def predict_hate_speech(text):
|
80 |
+
# Preprocess the text
|
81 |
+
padded_sequences = preprocess_text(text)
|
82 |
+
prediction = lstm_model.predict(padded_sequences)
|
83 |
+
return prediction
|
84 |
+
|
85 |
+
# Main function to run the Streamlit app
|
86 |
+
def main():
|
87 |
+
# Set up Streamlit UI
|
88 |
+
st.title("Hate Speech Detection")
|
89 |
+
st.write("Enter text below to detect hate speech:")
|
90 |
+
input_text = st.text_area("Input Text", "")
|
91 |
+
|
92 |
+
if st.button("Detect Hate Speech"):
|
93 |
+
if input_text:
|
94 |
+
# Predict hate speech
|
95 |
+
prediction = predict_hate_speech(input_text, lstm_model)
|
96 |
+
if prediction > 0.5:
|
97 |
+
st.error("Hate Speech Detected")
|
98 |
+
else:
|
99 |
+
st.success("No Hate Speech Detected")
|
100 |
+
else:
|
101 |
+
st.warning("Please enter some text")
|
102 |
+
|
103 |
+
# Run the app
|
104 |
+
if __name__ == "__main__":
|
105 |
+
main()
|