File size: 3,245 Bytes
54497de
 
 
 
 
 
 
 
 
 
 
 
 
bcb7c5c
54497de
 
 
c81d7c7
 
54497de
c81d7c7
54497de
 
 
bcb7c5c
 
 
54497de
 
 
 
bcb7c5c
54497de
 
 
 
 
 
 
 
 
 
bcb7c5c
54497de
 
 
 
bcb7c5c
54497de
 
bcb7c5c
54497de
 
 
 
629cd1c
bcb7c5c
54497de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629cd1c
54497de
c81d7c7
 
bcb7c5c
c81d7c7
1d6fdc1
c81d7c7
54497de
1d6fdc1
bcb7c5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calculation of the cross-entropy loss function using the huggingface evaluate module."""

import evaluate
import datasets
import numpy as np
import torch

from torch import nn, Tensor, tensor

_CITATION = """\
@InProceedings{huggingface:module,
title = {Loss Metric},
authors={YU YE},
year={2024}
}
"""

_DESCRIPTION = """\
Calculation of the cross-entropy loss function using the huggingface evaluate module.
"""

_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    loss: description of the first score,
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> my_new_module = evaluate.load("Aye10032/loss_metric")
    >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
    >>> print(results)
    {'loss': 1.0}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class LossMetric(evaluate.Metric):
    """Calculation of the cross-entropy loss function using the huggingface evaluate module."""

    def _info(self):
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                'predictions': datasets.Value('int64'),
                'references': datasets.Value('int64'),
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _compute(self, predictions, references):
        """Returns the scores"""
        pred = tensor(np.array(predictions), dtype=torch.float16)
        label = tensor(np.array(references), dtype=torch.float16)
        loss_func = nn.CrossEntropyLoss()
        loss = loss_func(pred, label)

        mean_loss = loss.item() / label.shape[0]
        return {
            "loss": mean_loss,
        }