Spaces:
Sleeping
Sleeping
File size: 10,442 Bytes
48cf656 4771b23 24aa623 48cf656 4771b23 24aa623 48cf656 24aa623 48cf656 24aa623 48cf656 24aa623 48cf656 24aa623 48cf656 4771b23 24aa623 4771b23 48cf656 24aa623 48cf656 4771b23 48cf656 24aa623 48cf656 4771b23 275c3ae 24aa623 48cf656 4771b23 48cf656 24aa623 48cf656 24aa623 48cf656 24aa623 48cf656 4771b23 48cf656 24aa623 48cf656 24aa623 48cf656 4771b23 48cf656 24aa623 48cf656 24aa623 48cf656 24aa623 48cf656 24aa623 48cf656 4771b23 48cf656 24aa623 48cf656 24aa623 48cf656 24aa623 48cf656 4771b23 48cf656 24aa623 48cf656 24aa623 48cf656 4771b23 48cf656 24aa623 b9d5055 275c3ae 24aa623 b9d5055 24aa623 48cf656 24aa623 48cf656 4771b23 48cf656 24aa623 48cf656 24aa623 48cf656 24aa623 48cf656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import numpy as np
from scipy.io.wavfile import write, read
from tqdm import tqdm
import gradio as gr
from scipy.signal import butter, lfilter
import reedsolo
import os
# ---------------Parameters--------------- #
input_file = 'input_text.wav'
output_file = 'output_filtered_sender.wav'
low_frequency = 18000
high_frequency = 19000
bit_duration = 0.007
sample_rate = 44100
amplitude_scaling_factor = 15.0
# ----------------Useless---------------- #
def delete_file(file_path):
"""
This function deletes a file at the specified path.
Parameters:
file_path (str): The path to the file to be deleted.
Returns:
None
"""
try:
# Attempt to remove the file
os.remove(file_path)
# If successful, print a success message
print(f"File '{file_path}' deleted successfully.")
except OSError as e:
# If an error occurs (like the file does not exist), print an error message
print(f"Error deleting file '{file_path}': {e}")
# -----------------Filter----------------- #
def butter_bandpass(sr, order=5):
"""
This function designs a Butterworth bandpass filter.
Parameters:
sr (int): The sample rate of the audio.
order (int): The order of the filter.
Returns:
tuple: The filter coefficients `b` and `a`.
"""
# Calculate the Nyquist frequency
nyquist = 0.5 * sr
# Normalize the cutoff frequencies with a 500 Hz offset
low = (low_frequency - 500) / nyquist
high = (high_frequency + 500) / nyquist
# Design the Butterworth bandpass filter
coef = butter(order, [low, high], btype='band')
# Extract the filter coefficients
b = coef[0]
a = coef[1]
return b, a
def butter_bandpass_filter(data, sr, order=5):
"""
This function applies the Butterworth bandpass filter to a given data.
Parameters:
data (array): The audio data to be filtered.
sr (int): The sample rate of the audio.
order (int): The order of the filter.
Returns:
array: The filtered audio data.
"""
# Get the filter coefficients
b, a = butter_bandpass(sr, order=order)
# Apply the filter to the data
y = lfilter(b, a, data)
return y
def filtered():
"""
This function reads an audio file, applies the bandpass filter to the audio data,
and then writes the filtered data to an output file.
Returns:
str: A success message if the audio is filtered correctly, otherwise an error message.
"""
# Read the audio data from the input file
sr, data = read(input_file)
# Apply the bandpass filter to the audio data
filtered_data = butter_bandpass_filter(data, sr)
# Write the filtered data to the output file
write(output_file, sr, np.int16(filtered_data))
return "Filtered Audio Generated"
# -----------------Sender----------------- #
def text_to_binary(text):
"""
This function converts a text string to a binary string.
Parameters:
text (str): The text string.
Returns:
str: The binary string.
"""
# Convert each character in the text to its ASCII value, format it as an 8-bit binary number, and join them together
binary_string = ''.join(format(ord(char), '08b') for char in text)
return binary_string
def signal_function(frequency, time):
"""
This function generates a sinusoidal signal with a given frequency and time.
Parameters:
frequency (float): The frequency of the signal.
time (array): The time values for the signal.
Returns:
array: The generated signal.
"""
# Return a sinusoidal signal with the given frequency and time
return np.sin(2 * np.pi * frequency * time)
def generate_silence(duration):
"""
This function generates a silence signal with a given duration.
Parameters:
duration (float): The duration of the silence.
Returns:
array: The silence signal.
"""
# Return a zero signal with the length corresponding to the given duration
return np.zeros(int(sample_rate * duration))
def binary_signal(binary_string):
"""
This function converts a binary string to a signal.
Parameters:
binary_string (str): The binary string.
Returns:
array: The signal.
"""
# Generate the time values for the signal
t = np.linspace(0, bit_duration, int(sample_rate * bit_duration), False)
signal = []
# For each bit in the binary string, generate a signal with the low or high frequency depending on the bit value
for bit in tqdm(binary_string, desc="Generating Signal"):
if bit == '0':
signal.append(amplitude_scaling_factor * np.sign(signal_function(low_frequency, t)))
else:
signal.append(amplitude_scaling_factor * np.sign(signal_function(high_frequency, t)))
# Concatenate the generated signals into one signal
return np.concatenate(signal)
def flag_encoding(bit_value):
"""
This function encodes a bit value into a flag signal.
Parameters:
bit_value (int): The bit value (0 or 1).
Returns:
array: The flag signal.
"""
# Generate the time values for the flag signal
flag_duration = 6 * 0.0014
t_flag = np.linspace(0, flag_duration, int(sample_rate * flag_duration), False)
signal = []
# Depending on the bit value, generate a flag signal with the corresponding binary flag
if bit_value == 0:
binary_flag = "100001"
for bit in binary_flag:
if bit == '0':
signal.append(amplitude_scaling_factor * np.sign(signal_function(low_frequency, t_flag)))
else:
signal.append(amplitude_scaling_factor * np.sign(signal_function(high_frequency, t_flag)))
return np.concatenate(signal)
else:
binary_flag = "011110"
for bit in tqdm(binary_flag, desc="Generating Signal"):
if bit == '0':
signal.append(amplitude_scaling_factor * np.sign(signal_function(low_frequency, t_flag)))
else:
signal.append(amplitude_scaling_factor * np.sign(signal_function(high_frequency, t_flag)))
return np.concatenate(signal)
def encode_rs(binary_string, ecc_bytes):
"""
This function encodes a binary string using Reed-Solomon encoding.
Parameters:
binary_string (str): The binary string.
ecc_bytes (int): The number of error correction bytes used in the encoding.
Returns:
str: The encoded binary string.
"""
# Convert the binary string to a bytearray
byte_data = bytearray(int(binary_string[i:i + 8], 2) for i in range(0, len(binary_string), 8))
# Initialize a Reed-Solomon codec
rs = reedsolo.RSCodec(ecc_bytes)
# Encode the bytearray
encoded_data = rs.encode(byte_data)
# Convert the encoded bytearray back to a binary string
encoded_binary_string = ''.join(format(byte, '08b') for byte in encoded_data)
return encoded_binary_string
def manchester_encoding(binary_string):
"""
This function encodes a binary string using Manchester encoding.
Parameters:
binary_string (str): The binary string.
Returns:
array: The Manchester encoded signal.
"""
# Encode the binary string using Reed-Solomon encoding
encode_binary_string = encode_rs(binary_string, 20)
# Generate the time values for the signal
t = np.linspace(0, bit_duration, int(sample_rate * bit_duration), False)
signal = []
# For each bit in the encoded binary string, generate a Manchester encoded signal
for bit in tqdm(encode_binary_string, desc="Generating Signal"):
if bit == '0':
signal.append(amplitude_scaling_factor * np.sign(signal_function(low_frequency, t)))
signal.append(amplitude_scaling_factor * np.sign(signal_function(high_frequency, t)))
else:
signal.append(amplitude_scaling_factor * np.sign(signal_function(high_frequency, t)))
signal.append(amplitude_scaling_factor * np.sign(signal_function(low_frequency, t)))
return np.concatenate(signal)
def binary_to_signal(binary_string):
"""
This function converts a binary string to a signal.
Parameters:
binary_string (str): The binary string.
Returns:
array: The signal.
"""
# Generate the start and end flags and the silence signals
flag_start = flag_encoding(0)
flag_end = flag_encoding(1)
silence_duration = 0.1
silence_before = generate_silence(silence_duration)
silence_after = generate_silence(silence_duration)
# Concatenate the silence signals, the start and end flags, and the Manchester encoded signal into one signal
signal = np.concatenate([silence_before, flag_start, manchester_encoding(binary_string), flag_end, silence_after])
return signal
def encode_and_generate_audio(text):
"""
This function encodes a text string into a binary string, converts the binary string to a signal, and writes the signal to an audio file.
Parameters:
text (str): The text string.
Returns:
str: A success message if the audio file is generated correctly, otherwise an error message.
"""
try:
# Delete the input and output files if they exist
#delete_file(input_file)
#delete_file(output_file)
# Convert the text to a binary string
binary_string_to_send = text_to_binary(text)
# Convert the binary string to a signal
signal = binary_to_signal(binary_string_to_send)
# Write the signal to an audio file
write('input_text.wav', 44100, signal.astype(np.int16))
# Apply the bandpass filter to the audio data and write the filtered data to an output file
filtered()
return "WAV file generated and ready to be sent."
except Exception as e:
# If an error occurs, return an error message
return f"Error: {str(e)}"
# -----------------Player----------------- #
def play_sound():
return gr.Audio(output_file, autoplay=True)
# -----------------Interface-----------------#
# Start a Gradio Blocks interface
with gr.Blocks() as demo:
name = gr.Textbox(label="Your Text")
output = gr.Textbox(label="Output")
submit = gr.Button("Generate Audio")
submit.click(fn=encode_and_generate_audio, inputs=name, outputs=output)
gr.Interface(fn=play_sound, inputs=[], outputs=gr.Audio(), live=False)
demo.launch() |