Spaces:
Sleeping
Sleeping
File size: 12,598 Bytes
a8c8bb7 05d9771 a8c8bb7 1c4573f 442e214 2557ecb 097e8db a8c8bb7 1c4573f a8c8bb7 1c4573f 6a85123 ab96498 6a85123 693f6e0 6a85123 693f6e0 6a85123 693f6e0 6a85123 693f6e0 85c9881 693f6e0 6a85123 693f6e0 d3bc4dd 6a85123 ab96498 a22641b 1cfcc99 6a85123 1cfcc99 0345aaf 1cfcc99 0345aaf 1cfcc99 6a85123 ab96498 a22641b 1cfcc99 a22641b 1cfcc99 5a74463 1cfcc99 5a74463 a8c8bb7 a22641b 1cfcc99 0345aaf a22641b 1cfcc99 507e460 1cfcc99 0345aaf 1cfcc99 0345aaf ab96498 6a85123 ab96498 6a85123 ab96498 6a85123 ab96498 6a85123 ab96498 6a85123 ab96498 6a85123 ab96498 6a85123 ab96498 6a85123 ab96498 6a85123 ab96498 6a85123 2557ecb 6a85123 1c4573f 6a85123 a8c8bb7 6a85123 a8c8bb7 6a85123 1c4573f 6a85123 a8c8bb7 a3c18bc 6a85123 a8c8bb7 6a85123 a8c8bb7 6a85123 1c4573f 2557ecb a3c18bc 2557ecb a3c18bc 6a85123 5a74463 6a85123 5a74463 6a85123 5a74463 6a85123 5a74463 1c4573f a8c8bb7 6a85123 a8c8bb7 6a85123 1c4573f 5a74463 6a85123 1c4573f a8c8bb7 6a85123 5a74463 6a85123 5a74463 6a85123 5a74463 e9ef9ac 6a85123 5a74463 e9ef9ac 6a85123 5a74463 e9ef9ac 5a74463 a8c8bb7 1c4573f a8c8bb7 6a85123 5a74463 a8c8bb7 1c4573f a8c8bb7 6a85123 5a74463 6a85123 5a74463 6a85123 5a74463 6a85123 5a74463 6a85123 5a74463 6a85123 5a74463 a8c8bb7 6a85123 a8c8bb7 6a85123 60e69dd 6a85123 a8c8bb7 6a85123 a8c8bb7 1c4573f 6a85123 a8c8bb7 1c4573f a8c8bb7 1c4573f a8c8bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import numpy as np
from scipy.io.wavfile import write
from scipy.signal import find_peaks
from scipy.fft import fft
from tqdm import tqdm
import matplotlib.pyplot as plt
from scipy.io.wavfile import read
from scipy import signal
import gradio as gr
import reedsolo
import wavio
from scipy.signal import butter, lfilter
# ---------------Parameters--------------- #
input_file = 'recorded.wav'
output_file = 'output_filtered_receiver.wav'
low_frequency = 18000
high_frequency = 19000
bit_duration = 0.007
sample_rate = 44100
amplitude_scaling_factor = 10.0
# -----------------Record----------------- #
def record(audio):
"""
This function records audio and writes it to a .wav file.
Parameters:
audio (tuple): A tuple containing the sample rate and the audio data.
Returns:
str: A success message if the audio is recorded correctly, otherwise an error message.
"""
try:
# Check if the audio tuple contains exactly two elements
if len(audio) != 2:
return f"Error: Expected a tuple with 2 elements, but got {len(audio)}"
# Unpack the sample rate and data from the audio tuple
sr, data = audio
# Write the audio data to a .wav file
wavio.write("recorded.wav", data, sr)
# Call the filtered function to apply the bandpass filter to the audio data
filtered()
# Return a success message
return f"Audio receive correctly"
except Exception as e:
# If an error occurs, return an error message
return f"Error: {str(e)}"
# -----------------Filter----------------- #
def butter_bandpass(sr, order=5):
"""
This function designs a Butterworth bandpass filter.
Parameters:
sr (int): The sample rate of the audio.
order (int): The order of the filter.
Returns:
tuple: The filter coefficients `b` and `a`.
"""
# Calculate the Nyquist frequency
nyquist = 0.5 * sr
# Normalize the cutoff frequencies with a 500 Hz offset
low = (low_frequency - 500) / nyquist
high = (high_frequency + 500) / nyquist
# Design the Butterworth bandpass filter
coef = butter(order, [low, high], btype='band')
# Extract the filter coefficients
b = coef[0]
a = coef[1]
return b, a
def butter_bandpass_filter(data, sr, order=5):
"""
This function applies the Butterworth bandpass filter to a given data.
Parameters:
data (array): The audio data to be filtered.
sr (int): The sample rate of the audio.
order (int): The order of the filter.
Returns:
array: The filtered audio data.
"""
# Get the filter coefficients
b, a = butter_bandpass(sr, order=order)
# Apply the filter to the data
y = lfilter(b, a, data)
return y
def filtered():
"""
This function reads an audio file, applies the bandpass filter to the audio data,
and then writes the filtered data to an output file.
Returns:
str: A success message if the audio is filtered correctly, otherwise an error message.
"""
# Read the audio data from the input file
sr, data = read(input_file)
# Apply the bandpass filter to the audio data
filtered_data = butter_bandpass_filter(data, sr)
# Write the filtered data to the output file
write(output_file, sr, np.int16(filtered_data))
return "Filtered Audio Generated"
# -----------------Frame----------------- #
def calculate_snr(data, start, end, target_frequency):
"""
This function calculates the Signal-to-Noise Ratio (SNR) for a given frequency within a segment of data.
Parameters:
data (array): The audio data.
start (int): The start index of the segment.
end (int): The end index of the segment.
target_frequency (float): The frequency for which the SNR is to be calculated.
Returns:
float: The calculated SNR.
"""
try:
# Extract the segment from the data
segment = data[start:end]
# Perform a Fast Fourier Transform on the segment
spectrum = np.fft.fft(segment)
# Generate the frequencies corresponding to the FFT coefficients
frequencies = np.fft.fftfreq(len(spectrum), 1 / sample_rate)
# Find the index of the target frequency
target_index = np.abs(frequencies - target_frequency).argmin()
# Calculate the amplitude of the target frequency
amplitude = np.abs(spectrum[target_index])
# Define a noise segment
noise_segment = data[100:1000 + len(segment)]
# Perform a Fast Fourier Transform on the noise segment
noise_spectrum = np.fft.fft(noise_segment)
# Calculate the amplitude of the noise at the target frequency
noise_amplitude = np.abs(noise_spectrum[target_index])
# Calculate the SNR
snr = 10 * np.log10(amplitude / noise_amplitude)
return snr
except Exception as e:
# If an error occurs, return an error message
return f"Error: {e}"
def frame_analyse(filename):
"""
This function analyses an audio file and returns the start and end times of the signal of interest.
Parameters:
filename (str): The path to the audio file.
Returns:
tuple: The start and end times of the signal of interest.
"""
try:
# Read the audio file
sr, y = read(filename)
# Define the start and end indices of the first and second parts of the audio data
first_part_start = 0
first_part_end = len(y) // 2
second_part_start = len(y) // 2
second_part_end = len(y)
# Define the segment length and overlap size for the spectrogram
segment_length = 256
overlap_size = 128
# Calculate the spectrogram of the audio data
f, t, sxx = signal.spectrogram(y, sr, nperseg=segment_length, noverlap=overlap_size)
# Plot the spectrogram
plt.figure()
plt.pcolormesh(t, f, sxx, shading="gouraud")
plt.xlabel("Time [s]")
plt.ylabel("Frequency [Hz]")
plt.title("Spectrogram of the signal")
plt.show()
# Define the target frequency
f0 = 18000
# Find the index of the target frequency
f_idx = np.argmin(np.abs(f - f0))
# Calculate the SNR thresholds for the start and end of the signal
thresholds_start = calculate_snr(y, first_part_start, first_part_end, low_frequency)
thresholds_end = calculate_snr(y, second_part_start, second_part_end, high_frequency)
# Find the start and end indices of the signal of interest
t_idx_start = np.argmax(sxx[f_idx] > thresholds_start)
t_idx_end = t_idx_start
while t_idx_end < len(t) and np.max(sxx[f_idx, t_idx_end:]) > thresholds_end:
t_idx_end += 1
# Convert the start and end indices to times
t_start = t[t_idx_start]
t_end = t[t_idx_end]
return t_start, t_end
except Exception as e:
# If an error occurs, return an error message
return f"Error: {e}"
# -----------------Receiver----------------- #
def dominant_frequency(signal_value):
"""
This function calculates the dominant frequency in a given signal.
Parameters:
signal_value (array): The signal data.
Returns:
float: The dominant frequency.
"""
# Perform a Fast Fourier Transform on the signal
yf = fft(signal_value)
# Generate the frequencies corresponding to the FFT coefficients
xf = np.linspace(0.0, sample_rate / 2.0, len(signal_value) // 2)
# Find the peaks in the absolute values of the FFT coefficients
peaks, _ = find_peaks(np.abs(yf[0:len(signal_value) // 2]))
# Return the frequency corresponding to the peak with the highest amplitude
return xf[peaks[np.argmax(np.abs(yf[0:len(signal_value) // 2][peaks]))]]
def binary_to_text(binary):
"""
This function converts a binary string to text.
Parameters:
binary (str): The binary string.
Returns:
str: The converted text.
"""
try:
# Convert each 8-bit binary number to a character and join them together
return ''.join(chr(int(binary[i:i + 8], 2)) for i in range(0, len(binary), 8))
except Exception as e:
# If an error occurs, return an error message
return f"Error: {e}"
def decode_rs(binary_string, ecc_bytes):
"""
This function decodes a Reed-Solomon encoded binary string.
Parameters:
binary_string (str): The binary string.
ecc_bytes (int): The number of error correction bytes used in the encoding.
Returns:
str: The decoded binary string.
"""
# Convert the binary string to a bytearray
byte_data = bytearray(int(binary_string[i:i + 8], 2) for i in range(0, len(binary_string), 8))
# Initialize a Reed-Solomon codec
rs = reedsolo.RSCodec(ecc_bytes)
# Decode the bytearray
corrected_data_tuple = rs.decode(byte_data)
corrected_data = corrected_data_tuple[0]
# Remove trailing null bytes
corrected_data = corrected_data.rstrip(b'\x00')
# Convert the bytearray back to a binary string
corrected_binary_string = ''.join(format(byte, '08b') for byte in corrected_data)
return corrected_binary_string
def manchester_decoding(binary_string):
"""
This function decodes a Manchester encoded binary string.
Parameters:
binary_string (str): The binary string.
Returns:
str: The decoded binary string.
"""
decoded_string = ''
for i in tqdm(range(0, len(binary_string), 2), desc="Decoding"):
if i + 1 < len(binary_string):
if binary_string[i] == '0' and binary_string[i + 1] == '1':
decoded_string += '0'
elif binary_string[i] == '1' and binary_string[i + 1] == '0':
decoded_string += '1'
else:
print("Error: Invalid Manchester Encoding")
return None
return decoded_string
def signal_to_binary_between_times(filename):
"""
This function converts a signal to a binary string between specified times.
Parameters:
filename (str): The path to the audio file.
Returns:
str: The binary string.
"""
# Get the start and end times of the signal of interest
start_time, end_time = frame_analyse(filename)
# Read the audio file
sr, data = read(filename)
# Calculate the start and end samples of the signal of interest
start_sample = int((start_time - 0.007) * sr)
end_sample = int((end_time - 0.007) * sr)
binary_string = ''
# Convert each sample to a binary digit
for i in tqdm(range(start_sample, end_sample, int(sr * bit_duration))):
signal_value = data[i:i + int(sr * bit_duration)]
frequency = dominant_frequency(signal_value)
if np.abs(frequency - low_frequency) < np.abs(frequency - high_frequency):
binary_string += '0'
else:
binary_string += '1'
# Find the start and end indices of the binary string
index_start = binary_string.find("1000001")
substrings = ["0111110", "011110"]
index_end = -1
for substring in substrings:
index = binary_string.find(substring)
if index != -1:
index_end = index
break
print("Binary String:", binary_string)
binary_string_decoded = manchester_decoding(binary_string[index_start + 7:index_end])
# Decode the binary string
decoded_binary_string = decode_rs(binary_string_decoded, 20)
return decoded_binary_string
def receive():
"""
This function receives an audio signal, converts it to a binary string, and then converts the binary string to text.
Returns:
str: The received text.
"""
try:
# Convert the audio signal to a binary string
audio_receive = signal_to_binary_between_times('output_filtered_receiver.wav')
# Convert the binary string to text
return binary_to_text(audio_receive)
except Exception as e:
# If an error occurs, return an error message
return f"Error: {e}"
# -----------------Interface----------------- #
# Start a Gradio Blocks interface
with gr.Blocks() as demo:
input_audio = gr.Audio(sources=["upload"])
output_text = gr.Textbox(label="Record Sound")
btn_convert = gr.Button(value="Convert")
btn_convert.click(fn=record, inputs=input_audio, outputs=output_text)
output_convert = gr.Textbox(label="Received Text")
btn_receive = gr.Button(value="Received Text")
btn_receive.click(fn=receive, outputs=output_convert)
demo.launch() |