Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,130 +2,129 @@ import streamlit as st
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import datetime
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Set page configuration
|
7 |
st.set_page_config(
|
8 |
page_title="Qwen2.5-Coder Chat",
|
9 |
page_icon="π¬",
|
10 |
-
layout="wide"
|
11 |
)
|
12 |
|
13 |
# Initialize session state
|
14 |
if 'messages' not in st.session_state:
|
15 |
st.session_state.messages = []
|
|
|
|
|
16 |
|
17 |
-
@st.cache_resource
|
18 |
def load_model_and_tokenizer():
|
19 |
try:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
# Load tokenizer first
|
25 |
tokenizer = AutoTokenizer.from_pretrained(
|
26 |
model_name,
|
27 |
trust_remote_code=True
|
28 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
st.info(f"π» Using device: {device}")
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
model_name,
|
38 |
-
torch_dtype=torch.float16, # Use float16 for GPU
|
39 |
-
device_map="auto",
|
40 |
-
trust_remote_code=True
|
41 |
-
).eval() # Set to evaluation mode
|
42 |
-
else:
|
43 |
-
model = AutoModelForCausalLM.from_pretrained(
|
44 |
-
model_name,
|
45 |
-
device_map={"": device},
|
46 |
-
trust_remote_code=True,
|
47 |
-
low_cpu_mem_usage=True
|
48 |
-
).eval() # Set to evaluation mode
|
49 |
|
|
|
50 |
return tokenizer, model
|
|
|
51 |
except Exception as e:
|
52 |
st.error(f"β Error loading model: {str(e)}")
|
53 |
-
|
54 |
|
55 |
-
def generate_response(prompt, model, tokenizer,
|
56 |
-
"""Generate response from the model with better error handling"""
|
57 |
try:
|
58 |
-
#
|
59 |
-
|
60 |
|
61 |
-
#
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
outputs = model.generate(
|
64 |
**inputs,
|
65 |
-
max_new_tokens=
|
66 |
-
temperature=
|
67 |
-
top_p=
|
68 |
do_sample=True,
|
69 |
pad_token_id=tokenizer.pad_token_id,
|
70 |
eos_token_id=tokenizer.eos_token_id,
|
71 |
-
|
72 |
-
|
73 |
)
|
74 |
|
75 |
-
#
|
|
|
|
|
76 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
return response[len(prompt):].strip()
|
78 |
-
|
79 |
except torch.cuda.OutOfMemoryError:
|
80 |
-
st.error("πΎ
|
81 |
return None
|
82 |
except Exception as e:
|
83 |
-
st.error(f"β Error
|
84 |
return None
|
85 |
|
86 |
# Main UI
|
87 |
st.title("π¬ Qwen2.5-Coder Chat")
|
88 |
|
89 |
-
# Sidebar settings
|
90 |
with st.sidebar:
|
91 |
st.header("βοΈ Settings")
|
92 |
|
93 |
-
# Model settings
|
94 |
max_length = st.slider(
|
95 |
-
"
|
96 |
min_value=64,
|
97 |
-
max_value=
|
98 |
-
value=
|
99 |
-
step=64
|
100 |
-
|
101 |
-
|
102 |
-
temperature = st.slider(
|
103 |
-
"Temperature π‘οΈ",
|
104 |
-
min_value=0.1,
|
105 |
-
max_value=2.0,
|
106 |
-
value=0.7,
|
107 |
-
step=0.1
|
108 |
)
|
109 |
|
110 |
-
top_p = st.slider(
|
111 |
-
"Top P π",
|
112 |
-
min_value=0.1,
|
113 |
-
max_value=1.0,
|
114 |
-
value=0.9,
|
115 |
-
step=0.1
|
116 |
-
)
|
117 |
-
|
118 |
-
# Clear conversation button
|
119 |
if st.button("ποΈ Clear Conversation"):
|
120 |
st.session_state.messages = []
|
121 |
st.rerun()
|
122 |
|
123 |
# Load model
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
tokenizer, model = load_model_and_tokenizer()
|
126 |
-
except Exception as e:
|
127 |
-
st.error("β Failed to load model. Please check the logs and refresh the page.")
|
128 |
-
st.stop()
|
129 |
|
130 |
# Display conversation history
|
131 |
for message in st.session_state.messages:
|
@@ -148,19 +147,14 @@ if prompt := st.chat_input("π Ask me anything about coding..."):
|
|
148 |
|
149 |
# Generate and display response
|
150 |
with st.chat_message("assistant"):
|
151 |
-
#
|
152 |
-
conversation = "\
|
153 |
-
f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
154 |
-
for msg in st.session_state.messages[-3:]
|
155 |
-
) + "\nAssistant:"
|
156 |
|
157 |
response = generate_response(
|
158 |
conversation,
|
159 |
model,
|
160 |
tokenizer,
|
161 |
-
|
162 |
-
temperature=temperature,
|
163 |
-
top_p=top_p
|
164 |
)
|
165 |
|
166 |
if response:
|
@@ -174,4 +168,7 @@ if prompt := st.chat_input("π Ask me anything about coding..."):
|
|
174 |
"timestamp": timestamp
|
175 |
})
|
176 |
else:
|
177 |
-
st.error("β Failed to generate response. Please try again with
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import datetime
|
5 |
+
import gc
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Enable memory efficient options
|
9 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
|
10 |
|
11 |
# Set page configuration
|
12 |
st.set_page_config(
|
13 |
page_title="Qwen2.5-Coder Chat",
|
14 |
page_icon="π¬",
|
15 |
+
layout="wide",
|
16 |
)
|
17 |
|
18 |
# Initialize session state
|
19 |
if 'messages' not in st.session_state:
|
20 |
st.session_state.messages = []
|
21 |
+
if 'model_loaded' not in st.session_state:
|
22 |
+
st.session_state.model_loaded = False
|
23 |
|
24 |
+
@st.cache_resource(show_spinner=False)
|
25 |
def load_model_and_tokenizer():
|
26 |
try:
|
27 |
+
model_name = "Qwen/Qwen2.5-Coder-3B-Instruct"
|
28 |
+
|
29 |
+
with st.spinner("π Loading tokenizer..."):
|
|
|
30 |
# Load tokenizer first
|
31 |
tokenizer = AutoTokenizer.from_pretrained(
|
32 |
model_name,
|
33 |
trust_remote_code=True
|
34 |
)
|
35 |
+
|
36 |
+
with st.spinner("π Loading model... (this may take a few minutes on CPU)"):
|
37 |
+
# Load model with 8-bit quantization for CPU
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
39 |
+
model_name,
|
40 |
+
device_map={"": "cpu"},
|
41 |
+
trust_remote_code=True,
|
42 |
+
low_cpu_mem_usage=True,
|
43 |
+
torch_dtype=torch.float32,
|
44 |
+
load_in_8bit=True # Enable 8-bit quantization
|
45 |
+
)
|
46 |
|
47 |
+
# Force CPU mode and eval mode
|
48 |
+
model = model.to("cpu").eval()
|
|
|
49 |
|
50 |
+
# Clear memory after loading
|
51 |
+
gc.collect()
|
52 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
st.session_state.model_loaded = True
|
55 |
return tokenizer, model
|
56 |
+
|
57 |
except Exception as e:
|
58 |
st.error(f"β Error loading model: {str(e)}")
|
59 |
+
return None, None
|
60 |
|
61 |
+
def generate_response(prompt, model, tokenizer, max_length=256):
|
|
|
62 |
try:
|
63 |
+
# Clear memory before generation
|
64 |
+
gc.collect()
|
65 |
|
66 |
+
# Tokenize with shorter maximum length
|
67 |
+
inputs = tokenizer(
|
68 |
+
prompt,
|
69 |
+
return_tensors="pt",
|
70 |
+
max_length=512,
|
71 |
+
truncation=True
|
72 |
+
).to("cpu")
|
73 |
+
|
74 |
+
# Generate with minimal parameters for CPU
|
75 |
+
with torch.no_grad(), st.spinner("π€ Thinking... (please be patient)"):
|
76 |
outputs = model.generate(
|
77 |
**inputs,
|
78 |
+
max_new_tokens=max_length,
|
79 |
+
temperature=0.7,
|
80 |
+
top_p=0.9,
|
81 |
do_sample=True,
|
82 |
pad_token_id=tokenizer.pad_token_id,
|
83 |
eos_token_id=tokenizer.eos_token_id,
|
84 |
+
num_beams=1, # Disable beam search
|
85 |
+
early_stopping=True
|
86 |
)
|
87 |
|
88 |
+
# Clear memory after generation
|
89 |
+
gc.collect()
|
90 |
+
|
91 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
92 |
return response[len(prompt):].strip()
|
93 |
+
|
94 |
except torch.cuda.OutOfMemoryError:
|
95 |
+
st.error("πΎ Memory exceeded. Try reducing the maximum length.")
|
96 |
return None
|
97 |
except Exception as e:
|
98 |
+
st.error(f"β Error: {str(e)}")
|
99 |
return None
|
100 |
|
101 |
# Main UI
|
102 |
st.title("π¬ Qwen2.5-Coder Chat")
|
103 |
|
104 |
+
# Sidebar with minimal settings
|
105 |
with st.sidebar:
|
106 |
st.header("βοΈ Settings")
|
107 |
|
|
|
108 |
max_length = st.slider(
|
109 |
+
"Response Length π",
|
110 |
min_value=64,
|
111 |
+
max_value=512,
|
112 |
+
value=256,
|
113 |
+
step=64,
|
114 |
+
help="Shorter lengths are recommended for CPU"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
if st.button("ποΈ Clear Conversation"):
|
118 |
st.session_state.messages = []
|
119 |
st.rerun()
|
120 |
|
121 |
# Load model
|
122 |
+
if not st.session_state.model_loaded:
|
123 |
+
tokenizer, model = load_model_and_tokenizer()
|
124 |
+
if model is None:
|
125 |
+
st.stop()
|
126 |
+
else:
|
127 |
tokenizer, model = load_model_and_tokenizer()
|
|
|
|
|
|
|
128 |
|
129 |
# Display conversation history
|
130 |
for message in st.session_state.messages:
|
|
|
147 |
|
148 |
# Generate and display response
|
149 |
with st.chat_message("assistant"):
|
150 |
+
# Keep only last message for context to reduce memory usage
|
151 |
+
conversation = f"Human: {prompt}\nAssistant:"
|
|
|
|
|
|
|
152 |
|
153 |
response = generate_response(
|
154 |
conversation,
|
155 |
model,
|
156 |
tokenizer,
|
157 |
+
max_length=max_length
|
|
|
|
|
158 |
)
|
159 |
|
160 |
if response:
|
|
|
168 |
"timestamp": timestamp
|
169 |
})
|
170 |
else:
|
171 |
+
st.error("β Failed to generate response. Please try again with a shorter length.")
|
172 |
+
|
173 |
+
# Clear memory after response
|
174 |
+
gc.collect()
|