Avinash109 commited on
Commit
bba8253
·
verified ·
1 Parent(s): 21a2ad0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +134 -0
app.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ # Set Streamlit page configuration
6
+ st.set_page_config(
7
+ page_title="Qwen2.5-Coder Chat",
8
+ page_icon="💬",
9
+ layout="wide",
10
+ )
11
+
12
+ # Title of the app
13
+ st.title("💬 Qwen2.5-Coder Chat Interface")
14
+
15
+ # Initialize session state for messages
16
+ if 'messages' not in st.session_state:
17
+ st.session_state['messages'] = []
18
+
19
+ # Function to load the model
20
+ @st.cache_resource
21
+ def load_model():
22
+ model_name = "Qwen/Qwen2.5-Coder-32B-Instruct" # Replace with your model path or name
23
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
24
+ model = AutoModelForCausalLM.from_pretrained(
25
+ model_name,
26
+ torch_dtype=torch.float16, # Use appropriate dtype
27
+ device_map='auto' # Automatically choose device (GPU/CPU)
28
+ )
29
+ return tokenizer, model
30
+
31
+ # Load tokenizer and model
32
+ with st.spinner("Loading model... This may take a while..."):
33
+ tokenizer, model = load_model()
34
+
35
+ # Function to generate model response
36
+ def generate_response(prompt, max_tokens=2048):
37
+ inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
38
+
39
+ # Generate response
40
+ with torch.no_grad():
41
+ outputs = model.generate(
42
+ inputs,
43
+ max_length=max_tokens,
44
+ temperature=0.7, # Adjust for creativity
45
+ top_p=0.9, # Nucleus sampling
46
+ do_sample=True, # Enable sampling
47
+ num_return_sequences=1
48
+ )
49
+
50
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
51
+ # Remove the prompt from the response
52
+ response = response[len(prompt):].strip()
53
+ return response
54
+
55
+ # Layout: Two columns, main chat and sidebar
56
+ chat_col, sidebar_col = st.columns([4, 1])
57
+
58
+ with chat_col:
59
+ # Display chat messages
60
+ for message in st.session_state['messages']:
61
+ if message['role'] == 'user':
62
+ st.markdown(f"**You:** {message['content']}")
63
+ else:
64
+ st.markdown(f"**Qwen2.5-Coder:** {message['content']}")
65
+
66
+ # Input area for user
67
+ with st.form(key='chat_form', clear_on_submit=True):
68
+ user_input = st.text_area("You:", height=100)
69
+ submit_button = st.form_submit_button(label='Send')
70
+
71
+ if submit_button and user_input:
72
+ # Append user message
73
+ st.session_state['messages'].append({'role': 'user', 'content': user_input})
74
+
75
+ # Generate and append model response
76
+ with st.spinner("Qwen2.5-Coder is typing..."):
77
+ response = generate_response(user_input, max_tokens=2048)
78
+ st.session_state['messages'].append({'role': 'assistant', 'content': response})
79
+
80
+ # Rerun to display new messages
81
+ st.experimental_rerun()
82
+
83
+ with sidebar_col:
84
+ st.sidebar.header("Settings")
85
+ max_tokens = st.sidebar.slider(
86
+ "Maximum Tokens",
87
+ min_value=512,
88
+ max_value=4096,
89
+ value=2048,
90
+ step=256,
91
+ help="Set the maximum number of tokens for the model's response."
92
+ )
93
+
94
+ temperature = st.sidebar.slider(
95
+ "Temperature",
96
+ min_value=0.1,
97
+ max_value=1.0,
98
+ value=0.7,
99
+ step=0.1,
100
+ help="Controls the randomness of the model's output."
101
+ )
102
+
103
+ top_p = st.sidebar.slider(
104
+ "Top-p (Nucleus Sampling)",
105
+ min_value=0.1,
106
+ max_value=1.0,
107
+ value=0.9,
108
+ step=0.1,
109
+ help="Controls the diversity of the model's output."
110
+ )
111
+
112
+ if st.sidebar.button("Clear Chat"):
113
+ st.session_state['messages'] = []
114
+ st.experimental_rerun()
115
+
116
+ # Update the generate_response function to use sidebar settings
117
+ def generate_response(prompt):
118
+ inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
119
+
120
+ # Generate response
121
+ with torch.no_grad():
122
+ outputs = model.generate(
123
+ inputs,
124
+ max_length=max_tokens,
125
+ temperature=temperature,
126
+ top_p=top_p,
127
+ do_sample=True,
128
+ num_return_sequences=1
129
+ )
130
+
131
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
132
+ # Remove the prompt from the response
133
+ response = response[len(prompt):].strip()
134
+ return response