Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,24 +4,24 @@ import torch
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import datetime
|
6 |
|
7 |
-
#
|
8 |
st.set_page_config(
|
9 |
-
page_title="Qwen2.5-Coder Chat",
|
10 |
page_icon="💬",
|
11 |
layout="wide"
|
12 |
)
|
13 |
|
14 |
-
# Set cache directory explicitly
|
15 |
os.environ["TRANSFORMERS_CACHE"] = "/root/.cache/huggingface"
|
16 |
|
17 |
# Initialize session state for conversation history
|
18 |
if 'messages' not in st.session_state:
|
19 |
st.session_state.messages = []
|
20 |
|
21 |
-
# Cache model loading
|
22 |
@st.cache_resource
|
23 |
def load_model_and_tokenizer():
|
24 |
-
model_name = "Qwen/Qwen2.5-Coder-3B-Instruct" #
|
25 |
|
26 |
# Load tokenizer
|
27 |
tokenizer = AutoTokenizer.from_pretrained(
|
@@ -33,22 +33,14 @@ def load_model_and_tokenizer():
|
|
33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
st.info(f"Using device: {device}")
|
35 |
|
36 |
-
# Load model
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
else:
|
45 |
-
model = AutoModelForCausalLM.from_pretrained(
|
46 |
-
model_name,
|
47 |
-
torch_dtype=torch.float32,
|
48 |
-
device_map={"": device},
|
49 |
-
trust_remote_code=True,
|
50 |
-
low_cpu_mem_usage=True
|
51 |
-
)
|
52 |
|
53 |
return tokenizer, model
|
54 |
|
@@ -62,8 +54,8 @@ with st.sidebar:
|
|
62 |
max_length = st.slider(
|
63 |
"Maximum Length",
|
64 |
min_value=64,
|
65 |
-
max_value=
|
66 |
-
value=
|
67 |
step=64,
|
68 |
help="Maximum number of tokens to generate"
|
69 |
)
|
@@ -71,8 +63,8 @@ with st.sidebar:
|
|
71 |
temperature = st.slider(
|
72 |
"Temperature",
|
73 |
min_value=0.1,
|
74 |
-
max_value=
|
75 |
-
value=0.
|
76 |
step=0.1,
|
77 |
help="Higher values make output more random, lower values more deterministic"
|
78 |
)
|
@@ -81,7 +73,7 @@ with st.sidebar:
|
|
81 |
"Top P",
|
82 |
min_value=0.1,
|
83 |
max_value=1.0,
|
84 |
-
value=0.
|
85 |
step=0.1,
|
86 |
help="Nucleus sampling: higher values consider more tokens, lower values are more focused"
|
87 |
)
|
@@ -99,11 +91,13 @@ except Exception as e:
|
|
99 |
st.stop()
|
100 |
|
101 |
# Response generation function
|
102 |
-
def generate_response(prompt, max_new_tokens=
|
103 |
"""Generate response from the model"""
|
104 |
try:
|
|
|
105 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
106 |
|
|
|
107 |
with torch.no_grad():
|
108 |
outputs = model.generate(
|
109 |
**inputs,
|
@@ -115,15 +109,16 @@ def generate_response(prompt, max_new_tokens=512, temperature=0.7, top_p=0.9):
|
|
115 |
eos_token_id=tokenizer.eos_token_id,
|
116 |
)
|
117 |
|
|
|
118 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
119 |
-
return response[len(prompt):].strip() # Extract only the response
|
120 |
|
121 |
except Exception as e:
|
122 |
st.error(f"Error generating response: {str(e)}")
|
123 |
return None
|
124 |
|
125 |
# Display conversation history
|
126 |
-
for message in st.session_state.messages:
|
127 |
with st.chat_message(message["role"]):
|
128 |
st.write(f"{message['content']}\n\n_{message['timestamp']}_")
|
129 |
|
@@ -144,10 +139,10 @@ if prompt := st.chat_input("Ask me anything about coding..."):
|
|
144 |
# Generate and display response
|
145 |
with st.chat_message("assistant"):
|
146 |
with st.spinner("Thinking..."):
|
147 |
-
# Prepare conversation context
|
148 |
conversation = "\n".join(
|
149 |
f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
150 |
-
for msg in st.session_state.messages
|
151 |
) + "\nAssistant:"
|
152 |
|
153 |
response = generate_response(
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import datetime
|
6 |
|
7 |
+
# Page configuration
|
8 |
st.set_page_config(
|
9 |
+
page_title="💬 Qwen2.5-Coder Chat",
|
10 |
page_icon="💬",
|
11 |
layout="wide"
|
12 |
)
|
13 |
|
14 |
+
# Set cache directory explicitly for Hugging Face Spaces
|
15 |
os.environ["TRANSFORMERS_CACHE"] = "/root/.cache/huggingface"
|
16 |
|
17 |
# Initialize session state for conversation history
|
18 |
if 'messages' not in st.session_state:
|
19 |
st.session_state.messages = []
|
20 |
|
21 |
+
# Cache model loading to prevent re-loading each session
|
22 |
@st.cache_resource
|
23 |
def load_model_and_tokenizer():
|
24 |
+
model_name = "Qwen/Qwen2.5-Coder-3B-Instruct" # Smaller 3B model for efficiency
|
25 |
|
26 |
# Load tokenizer
|
27 |
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
st.info(f"Using device: {device}")
|
35 |
|
36 |
+
# Load model with optimizations for CPU
|
37 |
+
model = AutoModelForCausalLM.from_pretrained(
|
38 |
+
model_name,
|
39 |
+
torch_dtype=torch.float32 if device == "cpu" else torch.float16,
|
40 |
+
device_map="auto" if device == "cuda" else {"": device},
|
41 |
+
trust_remote_code=True,
|
42 |
+
low_cpu_mem_usage=True # Reduce memory usage for CPU
|
43 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
return tokenizer, model
|
46 |
|
|
|
54 |
max_length = st.slider(
|
55 |
"Maximum Length",
|
56 |
min_value=64,
|
57 |
+
max_value=1024, # Lowered for CPU
|
58 |
+
value=256, # Default setting for CPU
|
59 |
step=64,
|
60 |
help="Maximum number of tokens to generate"
|
61 |
)
|
|
|
63 |
temperature = st.slider(
|
64 |
"Temperature",
|
65 |
min_value=0.1,
|
66 |
+
max_value=1.5, # Lower range to make output more deterministic
|
67 |
+
value=0.5,
|
68 |
step=0.1,
|
69 |
help="Higher values make output more random, lower values more deterministic"
|
70 |
)
|
|
|
73 |
"Top P",
|
74 |
min_value=0.1,
|
75 |
max_value=1.0,
|
76 |
+
value=0.8,
|
77 |
step=0.1,
|
78 |
help="Nucleus sampling: higher values consider more tokens, lower values are more focused"
|
79 |
)
|
|
|
91 |
st.stop()
|
92 |
|
93 |
# Response generation function
|
94 |
+
def generate_response(prompt, max_new_tokens=256, temperature=0.5, top_p=0.8):
|
95 |
"""Generate response from the model"""
|
96 |
try:
|
97 |
+
# Tokenize the input
|
98 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
99 |
|
100 |
+
# Generate response
|
101 |
with torch.no_grad():
|
102 |
outputs = model.generate(
|
103 |
**inputs,
|
|
|
109 |
eos_token_id=tokenizer.eos_token_id,
|
110 |
)
|
111 |
|
112 |
+
# Decode and return response
|
113 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
114 |
+
return response[len(prompt):].strip() # Extract only the model's response
|
115 |
|
116 |
except Exception as e:
|
117 |
st.error(f"Error generating response: {str(e)}")
|
118 |
return None
|
119 |
|
120 |
# Display conversation history
|
121 |
+
for message in st.session_state.messages[-5:]: # Limit to last 5 messages for efficiency
|
122 |
with st.chat_message(message["role"]):
|
123 |
st.write(f"{message['content']}\n\n_{message['timestamp']}_")
|
124 |
|
|
|
139 |
# Generate and display response
|
140 |
with st.chat_message("assistant"):
|
141 |
with st.spinner("Thinking..."):
|
142 |
+
# Prepare conversation context, limited to recent exchanges
|
143 |
conversation = "\n".join(
|
144 |
f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}"
|
145 |
+
for msg in st.session_state.messages[-3:] # Send only the last 3 messages
|
146 |
) + "\nAssistant:"
|
147 |
|
148 |
response = generate_response(
|