Avinash109 commited on
Commit
c53051e
·
verified ·
1 Parent(s): 0233af2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -0
app.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ from sklearn.preprocessing import MinMaxScaler
4
+ from transformers import AutoTokenizer
5
+
6
+ # Load data
7
+ df = pd.read_csv('NIFTY_OPTION_CHAIN_data.csv')
8
+
9
+ # Handle missing values
10
+ df.fillna(df.mean(), inplace=True)
11
+
12
+ # Normalize numerical columns
13
+ scaler = MinMaxScaler()
14
+ df[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaler.fit_transform(df[['open', 'high', 'low', 'close', 'volume', 'oi']])
15
+
16
+ # Tokenize categorical columns
17
+ tokenizer = AutoTokenizer.from_pretrained('llama-3.1')
18
+ df['Index'] = tokenizer.encode(df['Index'], return_tensors='pt')
19
+ df['Expiry'] = tokenizer.encode(df['Expiry'], return_tensors='pt')
20
+ df['OptionType'] = tokenizer.encode(df['OptionType'], return_tensors='pt')
21
+
22
+ # Convert datetime columns
23
+ df['datetime'] = pd.to_datetime(df['datetime'])
24
+ df['date'] = df['datetime'].dt.date
25
+ df['time'] = df['datetime'].dt.time