Spaces:
Sleeping
Sleeping
File size: 6,304 Bytes
182c4ed 441f684 3776d99 8448555 73670cb 8448555 73670cb 8448555 3776d99 8448555 3776d99 441f684 3776d99 8448555 7e2ed99 3776d99 8448555 73670cb 441f684 73670cb 8448555 441f684 8448555 441f684 8448555 441f684 7e2ed99 3776d99 441f684 8448555 3776d99 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 ad04e27 9c65345 8448555 73670cb 8448555 9c65345 8448555 9c65345 8448555 73670cb 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 8448555 9c65345 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import gradio as gr
import os
# Define the Dataset class
class BankNiftyDataset(Dataset):
def __init__(self, data, seq_len, target_cols=['close']):
self.data = data
self.seq_len = seq_len
self.target_cols = target_cols
def __len__(self):
return max(0, len(self.data) - self.seq_len + 1)
def __getitem__(self, idx):
seq_data = self.data.iloc[idx:idx+self.seq_len]
features = torch.tensor(seq_data[['open', 'high', 'low', 'close', 'volume', 'oi']].values, dtype=torch.float32)
label = torch.tensor(seq_data[self.target_cols].iloc[-1].values, dtype=torch.float32)
return features, label
# Define the LSTM model
class LSTMModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, num_layers=2, dropout=0.1):
super(LSTMModel, self).__init__()
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=num_layers, batch_first=True, dropout=dropout)
self.fc = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim // 2, output_dim)
)
def forward(self, x):
lstm_out, _ = self.lstm(x)
out = self.fc(lstm_out[:, -1, :])
return out
# Function to train the model
def train_model(model, train_loader, val_loader, num_epochs=10):
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
best_val_loss = float('inf')
best_model = None
for epoch in range(num_epochs):
model.train()
for features, labels in train_loader:
optimizer.zero_grad()
outputs = model(features)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
val_loss = 0
with torch.no_grad():
for features, labels in val_loader:
outputs = model(features)
val_loss += criterion(outputs, labels).item()
val_loss /= len(val_loader)
print(f"Epoch {epoch+1}/{num_epochs}, Validation Loss: {val_loss:.4f}")
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model = model.state_dict().copy()
model.load_state_dict(best_model)
return model, best_val_loss
# Function to generate trading signals
def generate_signals(predictions, actual_values, stop_loss_threshold=0.05):
signals = []
for pred, actual in zip(predictions, actual_values):
if pred > actual * (1 + stop_loss_threshold):
signals.append("Buy CE")
elif pred < actual * (1 - stop_loss_threshold):
signals.append("Buy PE")
else:
signals.append("Hold")
return signals
# Function to generate a report
def generate_report(predictions, actual_values, signals, val_loss):
report = []
cumulative_profit = 0
for i in range(len(signals)):
signal = signals[i]
profit = actual_values[i] - predictions[i]
if signal == "Buy CE":
cumulative_profit += profit
elif signal == "Buy PE":
cumulative_profit -= profit
report.append(f"Signal: {signal}, Actual: {actual_values[i]:.2f}, Predicted: {predictions[i]:.2f}, Profit: {profit:.2f}")
total_profit = cumulative_profit
report.append(f"Total Profit: {total_profit:.2f}")
report.append(f"Model Validation Loss: {val_loss:.4f}")
return "\n".join(report)
# Global variables to store the model and scaler
global_model = None
global_scaler = None
# Function to process data and make predictions
def predict():
global global_model, global_scaler
# Load the pre-existing CSV file
csv_path = 'BANKNIFTY_OPTION_CHAIN_data.csv'
if not os.path.exists(csv_path):
return "Error: CSV file not found in the expected location."
# Load and preprocess data
data = pd.read_csv(csv_path)
if global_scaler is None:
global_scaler = StandardScaler()
scaled_data = global_scaler.fit_transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
else:
scaled_data = global_scaler.transform(data[['open', 'high', 'low', 'close', 'volume', 'oi']])
data[['open', 'high', 'low', 'close', 'volume', 'oi']] = scaled_data
# Split data
train_data, val_data = train_test_split(data, test_size=0.2, random_state=42)
# Create datasets and dataloaders
seq_len = 20
target_cols = ['close']
train_dataset = BankNiftyDataset(train_data, seq_len, target_cols)
val_dataset = BankNiftyDataset(val_data, seq_len, target_cols)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# Initialize and train the model
input_dim = 6
hidden_dim = 64
output_dim = len(target_cols)
if global_model is None:
global_model = LSTMModel(input_dim, hidden_dim, output_dim)
global_model, val_loss = train_model(global_model, train_loader, val_loader)
# Make predictions
global_model.eval()
predictions = []
actual_values = val_data['close'].values[seq_len-1:]
with torch.no_grad():
for i in range(len(val_dataset)):
features, _ = val_dataset[i]
pred = global_model(features.unsqueeze(0)).item()
predictions.append(pred)
# Generate signals and report
signals = generate_signals(predictions, actual_values)
report = generate_report(predictions, actual_values, signals, val_loss)
return report
# Set up the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=None,
outputs=gr.Textbox(label="Prediction Report"),
title="BankNifty Option Chain Predictor",
description="Click 'Submit' to generate predictions and trading signals based on the latest BankNifty option chain data. The model is automatically trained and improved with each run."
)
# Launch the app
iface.launch() |