Upload 2 files
Browse files- app.py +47 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Load the model and tokenizer
|
6 |
+
model_name = "AventIQ-AI/gpt2-book-article-recommendation"
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
|
11 |
+
def recommend_titles(alphabet, num_recommendations=5):
|
12 |
+
"""Generate book/article recommendations based on an input alphabet."""
|
13 |
+
input_text = alphabet.strip()
|
14 |
+
if not input_text:
|
15 |
+
return ["β οΈ Please enter a valid letter."]
|
16 |
+
|
17 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
18 |
+
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model.generate(input_ids, max_length=15, num_return_sequences=num_recommendations, do_sample=True)
|
21 |
+
|
22 |
+
return [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
|
23 |
+
|
24 |
+
# Example Inputs
|
25 |
+
example_inputs = ["A", "B", "C", "D", "E"]
|
26 |
+
|
27 |
+
# Create Gradio Interface
|
28 |
+
with gr.Blocks() as demo:
|
29 |
+
gr.Markdown("## π AI-Powered Book & Article Recommendation")
|
30 |
+
gr.Markdown("Enter a letter, and the AI will suggest relevant book or article titles!")
|
31 |
+
|
32 |
+
with gr.Row():
|
33 |
+
alphabet_input = gr.Textbox(label="π Enter a Letter:", placeholder="Example: A")
|
34 |
+
num_recommendations = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Recommendations")
|
35 |
+
|
36 |
+
recommend_button = gr.Button("π Get Recommendations")
|
37 |
+
output_text = gr.Textbox(label="π Recommended Titles:", lines=6)
|
38 |
+
|
39 |
+
gr.Markdown("### π― Example Inputs")
|
40 |
+
example_buttons = [gr.Button(example) for example in example_inputs]
|
41 |
+
|
42 |
+
for btn in example_buttons:
|
43 |
+
btn.click(fn=lambda letter=btn.value: letter, outputs=alphabet_input)
|
44 |
+
|
45 |
+
recommend_button.click(recommend_titles, inputs=[alphabet_input, num_recommendations], outputs=output_text)
|
46 |
+
|
47 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
sentencepiece
|
5 |
+
torchvision
|
6 |
+
huggingface_hub
|
7 |
+
pillow
|
8 |
+
numpy
|