import gradio as gr from huggingface_hub import InferenceClient from typing import List, Tuple, Dict client = InferenceClient("AuriLab/gpt-bi-instruct-cesar") def format_messages(history: List[Tuple[str, str]], system_message: str, user_message: str) -> List[Dict[str, str]]: messages = [{"role": "system", "content": system_message}] messages.extend([ {"role": "user" if i % 2 == 0 else "assistant", "content": msg} for turn in history for i, msg in enumerate(turn) if msg ]) messages.append({"role": "user", "content": user_message}) return messages def respond(message: str, history: List[Tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float) -> str: messages = format_messages(history, system_message, message) response = "" for msg in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, repetition_penalty=1.2, # Add repetition penalty presence_penalty=0.5, # Penalize presence of repeated tokens frequency_penalty=0.5, # Penalize frequency of repeated tokens ): token = msg.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=256, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()