import torch import numpy as np import gradio as gr import cv2 import time import os from pathlib import Path # Create cache directory for models os.makedirs("models", exist_ok=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") # Use YOLOv5 Nano for better speed model_path = Path("models/yolov5n.pt") if model_path.exists(): print(f"Loading model from cache: {model_path}") model = torch.hub.load("ultralytics/yolov5", "custom", path=str(model_path), source="local").to(device) else: print("Downloading YOLOv5n model and caching...") model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device) torch.save(model.state_dict(), model_path) # Optimize model for speed model.conf = 0.3 # Lower confidence threshold model.iou = 0.3 # Non-Maximum Suppression IoU threshold model.classes = None # Detect all classes if device.type == "cuda": model.half() # Use FP16 for faster inference else: torch.set_num_threads(os.cpu_count()) model.eval() # Pre-generate colors for bounding boxes np.random.seed(42) colors = np.random.uniform(0, 255, size=(len(model.names), 3)) # Track FPS total_inference_time = 0 inference_count = 0 def preprocess_image(image): """ Prepares image for YOLOv5 detection. """ input_size = 640 image = cv2.resize(image, (input_size, input_size)) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR for OpenCV return image def detect_objects(image): global total_inference_time, inference_count if image is None: return None start_time = time.time() # Preprocess image image = preprocess_image(image) with torch.inference_mode(): # Faster than torch.no_grad() results = model(image, size=640) inference_time = time.time() - start_time total_inference_time += inference_time inference_count += 1 avg_inference_time = total_inference_time / inference_count detections = results.pred[0].cpu().numpy() output_image = image.copy() for *xyxy, conf, cls in detections: x1, y1, x2, y2 = map(int, xyxy) class_id = int(cls) color = colors[class_id].tolist() # Draw bounding box cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA) label = f"{model.names[class_id]} {conf:.2f}" font_scale, font_thickness = 0.9, 2 (w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness) # Label background cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1) cv2.putText(output_image, label, (x1 + 5, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA) fps = 1 / inference_time # Display FPS overlay = output_image.copy() cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1) output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0) cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA) cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA) return output_image # Gradio UI example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"] os.makedirs("examples", exist_ok=True) with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo: gr.Markdown(""" # Optimized YOLOv5 Object Detection Detects objects using YOLOv5 with enhanced visualization and FPS tracking. """) with gr.Row(): with gr.Column(scale=1): input_image = gr.Image(label="Input Image", type="numpy") submit_button = gr.Button("Submit", variant="primary") clear_button = gr.Button("Clear") with gr.Column(scale=1): output_image = gr.Image(label="Detected Objects", type="numpy") gr.Examples( examples=example_images, inputs=input_image, outputs=output_image, fn=detect_objects, cache_examples=True ) submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image) clear_button.click(lambda: (None, None), None, [input_image, output_image]) demo.launch()