Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,32 +10,18 @@ import time
|
|
10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
model = YOLO("yolov5s.pt").to(device)
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
def detect_objects(image):
|
18 |
-
"""Detect objects in an uploaded image with
|
19 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR for OpenCV
|
20 |
-
results = model.predict(image) #
|
21 |
-
|
22 |
-
|
23 |
-
for box in detections:
|
24 |
-
x1, y1, x2, y2, conf, cls = box[:6]
|
25 |
-
cls = int(cls) # Convert class to int
|
26 |
-
label = f"{model.names[cls]} {conf:.2f}"
|
27 |
-
color = tuple(map(int, colors[cls])) # Assign unique color
|
28 |
-
|
29 |
-
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
30 |
-
cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
31 |
-
|
32 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert back to RGB for Gradio
|
33 |
|
34 |
-
# Real-time webcam processing
|
35 |
-
cap = cv2.VideoCapture(0)
|
36 |
-
frame = None
|
37 |
-
lock = threading.Lock()
|
38 |
-
|
39 |
def process_webcam():
|
40 |
"""Continuously capture and process frames from the webcam."""
|
41 |
global frame
|
@@ -43,30 +29,21 @@ def process_webcam():
|
|
43 |
ret, img = cap.read()
|
44 |
if not ret:
|
45 |
continue
|
46 |
-
|
47 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB
|
48 |
-
results = model.predict(img) # Explicitly call predict
|
49 |
-
|
50 |
-
|
51 |
-
for box in detections:
|
52 |
-
x1, y1, x2, y2, conf, cls = box[:6]
|
53 |
-
cls = int(cls) # Convert class to int
|
54 |
-
label = f"{model.names[cls]} {conf:.2f}"
|
55 |
-
color = tuple(map(int, colors[cls])) # Assign unique color
|
56 |
-
|
57 |
-
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, 2)
|
58 |
-
cv2.putText(img, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
59 |
|
60 |
with lock:
|
61 |
-
frame = img
|
62 |
|
63 |
-
# Start the webcam thread
|
64 |
threading.Thread(target=process_webcam, daemon=True).start()
|
65 |
|
66 |
def get_webcam_frame():
|
67 |
"""Returns the latest processed webcam frame."""
|
68 |
with lock:
|
69 |
-
return frame
|
70 |
|
71 |
# Gradio UI
|
72 |
with gr.Blocks() as demo:
|
@@ -74,14 +51,14 @@ with gr.Blocks() as demo:
|
|
74 |
|
75 |
with gr.Tabs():
|
76 |
with gr.Tab("Real-Time Webcam"):
|
77 |
-
webcam_output = gr.Image(label="Live Webcam Feed")
|
78 |
-
|
79 |
def update_webcam():
|
80 |
while True:
|
81 |
with lock:
|
82 |
-
img = frame
|
83 |
webcam_output.update(img)
|
84 |
-
time.sleep(1/30) # ~30 FPS
|
85 |
|
86 |
threading.Thread(target=update_webcam, daemon=True).start()
|
87 |
|
|
|
10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
model = YOLO("yolov5s.pt").to(device)
|
12 |
|
13 |
+
# Open webcam
|
14 |
+
cap = cv2.VideoCapture(0)
|
15 |
+
frame = np.zeros((480, 640, 3), dtype=np.uint8) # Default blank frame
|
16 |
+
lock = threading.Lock()
|
17 |
|
18 |
def detect_objects(image):
|
19 |
+
"""Detect objects in an uploaded image with YOLO."""
|
20 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Convert to BGR for OpenCV
|
21 |
+
results = model.predict(image, conf=0.4) # Set confidence threshold
|
22 |
+
image = results[0].plot() # Plot detections directly on image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert back to RGB for Gradio
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
def process_webcam():
|
26 |
"""Continuously capture and process frames from the webcam."""
|
27 |
global frame
|
|
|
29 |
ret, img = cap.read()
|
30 |
if not ret:
|
31 |
continue
|
32 |
+
|
33 |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Convert to RGB
|
34 |
+
results = model.predict(img, conf=0.4) # Explicitly call predict
|
35 |
+
img = results[0].plot() # Directly draw detections on the frame
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
with lock:
|
38 |
+
frame = img # Update frame with detection overlay
|
39 |
|
40 |
+
# Start the webcam processing thread
|
41 |
threading.Thread(target=process_webcam, daemon=True).start()
|
42 |
|
43 |
def get_webcam_frame():
|
44 |
"""Returns the latest processed webcam frame."""
|
45 |
with lock:
|
46 |
+
return frame
|
47 |
|
48 |
# Gradio UI
|
49 |
with gr.Blocks() as demo:
|
|
|
51 |
|
52 |
with gr.Tabs():
|
53 |
with gr.Tab("Real-Time Webcam"):
|
54 |
+
webcam_output = gr.Image(label="Live Webcam Feed", type="numpy")
|
55 |
+
|
56 |
def update_webcam():
|
57 |
while True:
|
58 |
with lock:
|
59 |
+
img = frame
|
60 |
webcam_output.update(img)
|
61 |
+
time.sleep(1 / 30) # ~30 FPS
|
62 |
|
63 |
threading.Thread(target=update_webcam, daemon=True).start()
|
64 |
|