Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,14 @@ import numpy as np
|
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
|
8 |
-
# Load
|
9 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
-
model = YOLO("
|
11 |
model.to(device)
|
12 |
model.eval()
|
13 |
|
14 |
# Load COCO class labels
|
15 |
-
CLASS_NAMES = model.names #
|
16 |
|
17 |
def preprocess_image(image):
|
18 |
image = Image.fromarray(image)
|
@@ -21,30 +21,34 @@ def preprocess_image(image):
|
|
21 |
|
22 |
def detect_objects(image):
|
23 |
image = preprocess_image(image)
|
24 |
-
results = model.predict(image) # Run
|
25 |
|
26 |
# Convert results to bounding box format
|
27 |
image = np.array(image)
|
28 |
for result in results:
|
29 |
-
for box, cls in zip(result.boxes.xyxy, result.boxes.cls):
|
30 |
x1, y1, x2, y2 = map(int, box[:4])
|
31 |
class_name = CLASS_NAMES[int(cls)] # Get class name
|
|
|
32 |
|
33 |
-
# Draw bounding box
|
34 |
-
cv2.rectangle(image, (x1, y1), (x2, y2), (
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
return image
|
41 |
|
42 |
-
# Gradio UI
|
43 |
iface = gr.Interface(
|
44 |
fn=detect_objects,
|
45 |
-
inputs=gr.Image(type="numpy"),
|
46 |
-
outputs=gr.Image(type="numpy"),
|
47 |
-
|
|
|
|
|
48 |
)
|
49 |
|
50 |
-
iface.launch()
|
|
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
|
8 |
+
# Load YOLOv8 model
|
9 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
+
model = YOLO("yolov8x.pt") # Load a more powerful YOLOv8 model
|
11 |
model.to(device)
|
12 |
model.eval()
|
13 |
|
14 |
# Load COCO class labels
|
15 |
+
CLASS_NAMES = model.names # YOLO's built-in class names
|
16 |
|
17 |
def preprocess_image(image):
|
18 |
image = Image.fromarray(image)
|
|
|
21 |
|
22 |
def detect_objects(image):
|
23 |
image = preprocess_image(image)
|
24 |
+
results = model.predict(image) # Run YOLO inference
|
25 |
|
26 |
# Convert results to bounding box format
|
27 |
image = np.array(image)
|
28 |
for result in results:
|
29 |
+
for box, cls, conf in zip(result.boxes.xyxy, result.boxes.cls, result.boxes.conf):
|
30 |
x1, y1, x2, y2 = map(int, box[:4])
|
31 |
class_name = CLASS_NAMES[int(cls)] # Get class name
|
32 |
+
confidence = conf.item() * 100 # Convert confidence to percentage
|
33 |
|
34 |
+
# Draw a bolder bounding box
|
35 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 4) # Increased thickness
|
36 |
|
37 |
+
# Larger text for class label
|
38 |
+
label = f"{class_name} ({confidence:.1f}%)"
|
39 |
+
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
40 |
+
1, (0, 255, 0), 3, cv2.LINE_AA) # Larger text
|
41 |
|
42 |
return image
|
43 |
|
44 |
+
# Gradio UI with Submit button
|
45 |
iface = gr.Interface(
|
46 |
fn=detect_objects,
|
47 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
48 |
+
outputs=gr.Image(type="numpy", label="Detected Objects"),
|
49 |
+
title="Object Detection",
|
50 |
+
description="Use webcam or Upload an image to detect objects.",
|
51 |
+
allow_flagging="never" # Disables unwanted flags
|
52 |
)
|
53 |
|
54 |
+
iface.launch()
|