Aumkeshchy2003's picture
Update app.py
d791bba verified
raw
history blame
3.68 kB
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
import onnxruntime
from pathlib import Path
from ultralytics import YOLO
# Load YOLOv5 model for ONNX export
model = YOLO("yolov5n.pt") # Use "yolov5x.pt" if you want the larger model
# Export to ONNX format
model.export(format="onnx", dynamic=True)
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model_path = Path("models/yolov5n.onnx")
if not model_path.exists():
print("Downloading YOLOv5n model and converting to ONNX...")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
model.eval()
# Exporting to ONNX
model.export(format="onnx", dynamic=True)
os.rename("yolov5n.onnx", model_path)
del model # Free memory
# Loading ONNX model for ultra-fast inference
session = onnxruntime.InferenceSession(str(model_path), providers=['CUDAExecutionProvider'])
# Generate random colors for each class
np.random.seed(42)
colors = np.random.uniform(0, 255, size=(80, 3))
total_inference_time = 0
inference_count = 0
def detect_objects(image):
global total_inference_time, inference_count
if image is None:
return None
start_time = time.time()
image = cv2.resize(image, (416, 416))
image = image.astype(np.float32) / 255.0
image = np.transpose(image, (2, 0, 1))
image = np.expand_dims(image, axis=0)
# Run inference
inputs = {session.get_inputs()[0].name: image}
output = session.run(None, inputs)
detections = output[0][0]
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
fps = 1 / inference_time
# Draw bounding boxes
output_image = image[0].transpose(1, 2, 0) * 255
output_image = output_image.astype(np.uint8)
for det in detections:
x1, y1, x2, y2, conf, class_id = map(int, det[:6])
if conf < 0.3: # Confidence threshold
continue
color = colors[class_id].tolist()
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3)
label = f"Class {class_id} {conf:.2f}"
cv2.putText(output_image, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
# Display FPS
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return output_image
# Gradio Interface
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
os.makedirs("examples", exist_ok=True)
with gr.Blocks(title="Optimized YOLOv5 Object Detection") as demo:
gr.Markdown("# **Optimized YOLOv5 Object Detection** πŸš€")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
submit_button = gr.Button("Detect Objects", variant="primary")
clear_button = gr.Button("Clear")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Objects", type="numpy")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=detect_objects,
cache_examples=True
)
submit_button.click(fn=detect_objects, inputs=input_image, outputs=output_image)
clear_button.click(lambda: (None, None), None, [input_image, output_image])
demo.launch()