Aumkeshchy2003's picture
Update app.py
a4bd3f4 verified
raw
history blame
7.63 kB
import torch
import numpy as np
import gradio as gr
import cv2
import time
import os
import threading
from queue import Queue
from pathlib import Path
# Create cache directory for models
os.makedirs("models", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Use YOLOv5n (nano) for higher FPS
model_path = Path("models/yolov5n.pt")
if model_path.exists():
print(f"Loading model from cache: {model_path}")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True, source="local", path=str(model_path)).to(device)
else:
print("Downloading YOLOv5n model and caching...")
model = torch.hub.load("ultralytics/yolov5", "yolov5n", pretrained=True).to(device)
torch.save(model.state_dict(), model_path)
# Model configurations for better performance
model.conf = 0.5 # Confidence threshold
model.iou = 0.45 # IOU threshold
model.classes = None # Detect all classes
model.max_det = 20 # Limit detections for speed
if device.type == "cuda":
model.half() # Half precision for CUDA
else:
torch.set_num_threads(os.cpu_count())
model.eval()
# Precompute colors for bounding boxes
np.random.seed(42)
colors = np.random.uniform(0, 255, size=(len(model.names), 3))
# Performance tracking
total_inference_time = 0
inference_count = 0
last_fps_values = [] # Store recent FPS values
def detect_objects(image):
"""Process a single image for object detection"""
global total_inference_time, inference_count
if image is None:
return None
start_time = time.time()
output_image = image.copy()
input_size = 640
# Optimize input for inference
with torch.no_grad():
results = model(image, size=input_size)
inference_time = time.time() - start_time
total_inference_time += inference_time
inference_count += 1
avg_inference_time = total_inference_time / inference_count
detections = results.pred[0].cpu().numpy()
# Draw detections
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
# Bounding box
cv2.rectangle(output_image, (x1, y1), (x2, y2), color, 3, lineType=cv2.LINE_AA)
# Label with class name and confidence
label = f"{model.names[class_id]} {conf:.2f}"
font_scale, font_thickness = 0.9, 2
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
cv2.rectangle(output_image, (x1, y1 - h - 10), (x1 + w + 10, y1), color, -1)
cv2.putText(output_image, label, (x1 + 5, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
fps = 1 / inference_time
# Stylish FPS display
overlay = output_image.copy()
cv2.rectangle(overlay, (10, 10), (300, 80), (0, 0, 0), -1)
output_image = cv2.addWeighted(overlay, 0.6, output_image, 0.4, 0)
cv2.putText(output_image, f"FPS: {fps:.2f}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
cv2.putText(output_image, f"Avg FPS: {1/avg_inference_time:.2f}", (20, 70),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, lineType=cv2.LINE_AA)
return output_image
def process_webcam_frame(frame):
"""Process a single frame from webcam"""
global last_fps_values
if frame is None:
return None
start_time = time.time()
# Use a smaller size for real-time
input_size = 384
# Process the frame
with torch.no_grad():
results = model(frame, size=input_size)
# Calculate FPS
inference_time = time.time() - start_time
current_fps = 1 / inference_time if inference_time > 0 else 30
# Update FPS history (keep last 30 values)
last_fps_values.append(current_fps)
if len(last_fps_values) > 30:
last_fps_values.pop(0)
avg_fps = sum(last_fps_values) / len(last_fps_values)
# Create output image
output = frame.copy()
# Draw detections
detections = results.pred[0].cpu().numpy()
for *xyxy, conf, cls in detections:
x1, y1, x2, y2 = map(int, xyxy)
class_id = int(cls)
color = colors[class_id].tolist()
# Draw rectangle and label
cv2.rectangle(output, (x1, y1), (x2, y2), color, 2, lineType=cv2.LINE_AA)
label = f"{model.names[class_id]} {conf:.2f}"
font_scale, font_thickness = 0.6, 1
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, font_scale, font_thickness)
cv2.rectangle(output, (x1, y1 - h - 5), (x1 + w + 5, y1), color, -1)
cv2.putText(output, label, (x1 + 3, y1 - 3),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), font_thickness, lineType=cv2.LINE_AA)
# Add FPS counter
cv2.rectangle(output, (10, 10), (210, 80), (0, 0, 0), -1)
cv2.putText(output, f"FPS: {current_fps:.1f}", (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2, lineType=cv2.LINE_AA)
cv2.putText(output, f"Avg FPS: {avg_fps:.1f}", (20, 70),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2, lineType=cv2.LINE_AA)
return output
def process_uploaded_image(image):
"""Process an uploaded image"""
return detect_objects(image)
# Setup Gradio interface
example_images = ["spring_street_after.jpg", "pexels-hikaique-109919.jpg"]
os.makedirs("examples", exist_ok=True)
# Simplified interface with proper webcam handling
with gr.Blocks(title="YOLOv5 Object Detection - Real-time & Image Upload") as demo:
gr.Markdown("""
# YOLOv5 Object Detection
## Real-time webcam detection and image upload processing
""")
with gr.Tabs():
with gr.TabItem("Real-time Detection"):
gr.Markdown("""
### Real-time Object Detection
Using your webcam for continuous object detection at 30+ FPS.
""")
# Use Gradio's webcam component with processing function
webcam = gr.Webcam(label="Webcam Input")
webcam_output = gr.Image(label="Real-time Detection")
detect_button = gr.Button("Detect Objects")
# Connect webcam to processor
detect_button.click(
fn=process_webcam_frame,
inputs=webcam,
outputs=webcam_output
)
with gr.TabItem("Image Upload"):
gr.Markdown("""
### Image Upload Detection
Upload an image to detect objects.
""")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(label="Input Image", type="numpy")
submit_button = gr.Button("Submit", variant="primary")
clear_button = gr.Button("Clear")
with gr.Column(scale=1):
output_image = gr.Image(label="Detected Objects", type="numpy")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=process_uploaded_image,
cache_examples=True
)
# Set up event handlers
submit_button.click(fn=process_uploaded_image, inputs=input_image, outputs=output_image)
clear_button.click(lambda: (None, None), None, [input_image, output_image])
demo.launch(share=False)