Spaces:
Running
Running
import cv2 | |
import torch | |
import numpy as np | |
import gradio as gr | |
from ultralytics import YOLO | |
import threading | |
# Load YOLOv5 model (optimized for CUDA if available) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = YOLO("yolov5s.pt").to(device) | |
def detect_objects(image): | |
"""Detect objects in an uploaded image.""" | |
results = model(image) | |
detections = results[0].boxes.data.cpu().numpy() # Get detections | |
for box in detections: | |
x1, y1, x2, y2, conf, cls = map(int, box[:6]) | |
label = f"{model.names[cls]} {conf:.2f}" | |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
return image | |
# Real-time webcam processing | |
cap = cv2.VideoCapture(0) # Capture from webcam | |
frame = None | |
lock = threading.Lock() | |
def process_webcam(): | |
global frame | |
while True: | |
ret, img = cap.read() | |
if not ret: | |
continue | |
results = model(img) | |
detections = results[0].boxes.data.cpu().numpy() | |
for box in detections: | |
x1, y1, x2, y2, conf, cls = map(int, box[:6]) | |
label = f"{model.names[cls]} {conf:.2f}" | |
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText(img, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
with lock: | |
frame = img | |
# Start the webcam thread | |
threading.Thread(target=process_webcam, daemon=True).start() | |
def get_webcam_frame(): | |
"""Returns the latest processed webcam frame.""" | |
with lock: | |
return frame if frame is not None else np.zeros((480, 640, 3), dtype=np.uint8) | |
# Gradio UI | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# YOLOv5 Real-Time Object Detection") | |
with gr.Tabs(): | |
with gr.Tab("Real-Time Webcam"): | |
gr.Video(get_webcam_frame, streaming=True) | |
with gr.Tab("Upload Image"): | |
image_input = gr.Image(type="numpy") | |
image_output = gr.Image() | |
image_button = gr.Button("Detect Objects") | |
image_button.click(detect_objects, inputs=image_input, outputs=image_output) | |
demo.launch() | |