File size: 1,297 Bytes
a29d5e2
 
caff61e
a29d5e2
 
 
 
caff61e
 
 
 
a29d5e2
caff61e
 
a29d5e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caff61e
 
a29d5e2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import JSONResponse
import torch
from PIL import Image
from torchvision.transforms import functional as F
from yolov5.models.yolo import Model
from yolov5.utils.general import non_max_suppression

app = FastAPI()

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True).to(device)
model.eval()

def preprocess_image(image):
    image_tensor = F.to_tensor(image)
    return image_tensor.unsqueeze(0).to(device)

def draw_boxes(outputs, threshold=0.3):
    boxes = []
    for box in outputs:
        score, label, x1, y1, x2, y2 = box[4].item(), int(box[5].item()), box[0].item(), box[1].item(), box[2].item(), box[3].item()
        if score > threshold:
            boxes.append({
                "label": model.names[label],
                "score": score,
                "box": [x1, y1, x2, y2]
            })
    return boxes

@app.post("/predict/")
async def predict(file: UploadFile = File(...)):
    image = Image.open(file.file)
    image_tensor = preprocess_image(image)
    outputs = model(image_tensor)
    outputs = non_max_suppression(outputs)[0]
    boxes = draw_boxes(outputs)
    return JSONResponse(content={"boxes": boxes})