SD3.5-Large / app.py
Jagrut Thakare
v6 - png format
abef603
raw
history blame contribute delete
4.06 kB
import gradio as gr
import numpy as np
import random
import os
import spaces
from diffusers import DiffusionPipeline
import torch
from huggingface_hub import login
login(os.getenv("HF_TOKEN"))
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, use_safetensors=True)
if torch.cuda.is_available():
pipe = pipe.to(device, dtype=torch.bfloat16)
torch_dtype = torch.bfloat16
else :
pipe = pipe.to(device, dtype=torch.float32)
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU()
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=0.0,
num_inference_steps=4,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"A capybara wearing a suit holding a sign that reads Hello World",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Stable Diffusion 3.5 Large")
with gr.Row():
prompt = gr.Text(
label="Prompt",
max_lines=5,
placeholder="Enter your prompt",
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
placeholder="Enter a negative prompt",
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", format="png", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()