File size: 14,562 Bytes
eed5424 e3d67e9 eed5424 f0fbb06 eed5424 513f7a6 f0fbb06 eed5424 513f7a6 f0fbb06 eed5424 513f7a6 eed5424 513f7a6 eed5424 513f7a6 eed5424 513f7a6 eed5424 513f7a6 eed5424 513f7a6 eed5424 f0fbb06 eed5424 513f7a6 eed5424 f0fbb06 eed5424 513f7a6 eed5424 f0fbb06 513f7a6 eed5424 513f7a6 eed5424 f0fbb06 eed5424 f0fbb06 eed5424 f0fbb06 eed5424 513f7a6 eed5424 e3d67e9 eed5424 513f7a6 eed5424 e3d67e9 eed5424 751f392 eed5424 513f7a6 eed5424 513f7a6 f0fbb06 ce67cd9 eed5424 e3d67e9 513f7a6 e3d67e9 513f7a6 e3d67e9 513f7a6 e3d67e9 513f7a6 e3d67e9 eed5424 513f7a6 eed5424 f0fbb06 513f7a6 e3d67e9 6d6d5c5 eed5424 513f7a6 f0fbb06 ce67cd9 f0fbb06 ce67cd9 f0fbb06 e3d67e9 f0fbb06 eed5424 ce67cd9 f0fbb06 513f7a6 f0fbb06 e3d67e9 ce67cd9 f0fbb06 eed5424 f0fbb06 eed5424 513f7a6 f0fbb06 513f7a6 e3d67e9 513f7a6 e3d67e9 513f7a6 e3d67e9 513f7a6 f0fbb06 513f7a6 e3d67e9 513f7a6 e3d67e9 513f7a6 f0fbb06 513f7a6 e3d67e9 f0fbb06 e3d67e9 f0fbb06 e3d67e9 513f7a6 f0fbb06 e3d67e9 f0fbb06 513f7a6 e3d67e9 eed5424 513f7a6 e3d67e9 513f7a6 eed5424 513f7a6 eed5424 e3d67e9 f0fbb06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import gradio as gr
import onnxruntime_genai as og
import time
import os
from huggingface_hub import snapshot_download
import argparse
import logging
import numpy as np # Import numpy
# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# --- Configuration ---
MODEL_REPO = "microsoft/Phi-4-mini-instruct-onnx"
# --- Defaulting to CPU INT4 for Hugging Face Spaces ---
EXECUTION_PROVIDER = "cpu" # Corresponds to installing 'onnxruntime-genai'
MODEL_VARIANT_GLOB = "cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/*"
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
# --- (Optional) Alternative GPU Configuration ---
# EXECUTION_PROVIDER = "cuda" # Corresponds to installing 'onnxruntime-genai-cuda'
# MODEL_VARIANT_GLOB = "gpu/gpu-int4-rtn-block-32/*"
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
LOCAL_MODEL_DIR = "./phi4-mini-onnx-model" # Directory within the Space
HF_LOGO_URL = "https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
HF_MODEL_URL = f"https://huggingface.co/{MODEL_REPO}"
ORT_GENAI_URL = "https://github.com/microsoft/onnxruntime-genai"
PHI_LOGO_URL = "https://microsoft.github.io/phi/assets/img/logo-final.png" # Phi logo for bot avatar
# Global variables for model and tokenizer
model = None
tokenizer = None
model_variant_name = os.path.basename(os.path.dirname(MODEL_VARIANT_GLOB)) # For display
model_status = "Initializing..."
# --- Model Download and Load ---
def initialize_model():
"""Downloads and loads the ONNX model and tokenizer."""
global model, tokenizer, model_status
logging.info("--- Initializing ONNX Runtime GenAI ---")
model_status = "Downloading model..."
logging.info(model_status)
# --- Download ---
model_variant_dir = os.path.join(LOCAL_MODEL_DIR, os.path.dirname(MODEL_VARIANT_GLOB))
if os.path.exists(model_variant_dir) and os.listdir(model_variant_dir):
logging.info(f"Model variant found in {model_variant_dir}. Skipping download.")
model_path = model_variant_dir
else:
logging.info(f"Downloading model variant '{MODEL_VARIANT_GLOB}' from {MODEL_REPO}...")
try:
snapshot_download(
MODEL_REPO,
allow_patterns=[MODEL_VARIANT_GLOB],
local_dir=LOCAL_MODEL_DIR,
local_dir_use_symlinks=False
)
model_path = model_variant_dir
logging.info(f"Model downloaded to: {model_path}")
except Exception as e:
logging.error(f"Error downloading model: {e}", exc_info=True)
model_status = f"Error downloading model: {e}"
raise RuntimeError(f"Failed to download model: {e}")
# --- Load ---
model_status = f"Loading model ({EXECUTION_PROVIDER.upper()})..."
logging.info(model_status)
try:
# The simple constructor often works by detecting the installed ORT package.
logging.info(f"Using provider based on installed package (expecting: {EXECUTION_PROVIDER})")
model = og.Model(model_path) # Simplified model loading
tokenizer = og.Tokenizer(model)
model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
logging.info("Model and Tokenizer loaded successfully.")
except AttributeError as ae:
logging.error(f"AttributeError during model/tokenizer init: {ae}", exc_info=True)
logging.error("This might indicate an installation issue or version incompatibility with onnxruntime_genai.")
model_status = f"Init Error: {ae}"
raise RuntimeError(f"Failed to initialize model/tokenizer: {ae}")
except Exception as e:
logging.error(f"Error loading model or tokenizer: {e}", exc_info=True)
model_status = f"Error loading model: {e}"
raise RuntimeError(f"Failed to load model: {e}")
# --- Generation Function (Core Logic) ---
def generate_response_stream(prompt, history, max_length, temperature, top_p, top_k):
"""Generates a response using the Phi-4 ONNX model, yielding text chunks."""
global model_status
if not model or not tokenizer:
model_status = "Error: Model not initialized!"
yield "Error: Model not initialized. Please check logs."
return
# --- Prepare the prompt using the Phi-4 instruct format ---
full_prompt = ""
# History format is [[user1, bot1], [user2, bot2], ...]
for user_msg, assistant_msg in history: # history here is *before* the current prompt
full_prompt += f"<|user|>\n{user_msg}<|end|>\n"
if assistant_msg: # Append assistant message only if it exists
full_prompt += f"<|assistant|>\n{assistant_msg}<|end|>\n"
# Add the current user prompt and the trigger for the assistant's response
full_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
logging.info(f"Generating response (MaxL: {max_length}, Temp: {temperature}, TopP: {top_p}, TopK: {top_k})")
try:
input_tokens_list = tokenizer.encode(full_prompt) # Encode returns a list/array
# Ensure input_tokens is a numpy array of the correct type (int32 is common)
input_tokens = np.array(input_tokens_list, dtype=np.int32)
# Reshape to (batch_size, sequence_length), which is (1, N) for single prompt
input_tokens = input_tokens.reshape((1, -1))
search_options = {
"max_length": max_length,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"do_sample": True,
}
params = og.GeneratorParams(model)
params.set_search_options(**search_options)
# FIX: Create a dictionary mapping input names to tensors (numpy arrays)
# and pass this dictionary to set_inputs.
# Assuming the standard input name "input_ids".
inputs = {"input_ids": input_tokens}
logging.info(f"Setting inputs with keys: {inputs.keys()} and shape for 'input_ids': {inputs['input_ids'].shape}")
params.set_inputs(inputs)
start_time = time.time()
# Create generator AFTER setting parameters including inputs
generator = og.Generator(model, params)
model_status = "Generating..." # Update status indicator
logging.info("Streaming response...")
first_token_time = None
token_count = 0
# Rely primarily on generator.is_done()
while not generator.is_done():
try:
generator.compute_logits()
generator.generate_next_token()
if first_token_time is None:
first_token_time = time.time() # Record time to first token
next_token = generator.get_next_tokens()[0]
decoded_chunk = tokenizer.decode([next_token])
token_count += 1
# Secondary check: Stop if the model explicitly generates the <|end|> string literal.
if decoded_chunk == "<|end|>":
logging.info("Assistant explicitly generated <|end|> token string.")
break
yield decoded_chunk # Yield just the text chunk
except Exception as loop_error:
logging.error(f"Error inside generation loop: {loop_error}", exc_info=True)
yield f"\n\nError during token generation: {loop_error}"
break # Exit loop on error
end_time = time.time()
ttft = (first_token_time - start_time) * 1000 if first_token_time else -1
total_time = end_time - start_time
tps = (token_count / total_time) if total_time > 0 else 0
logging.info(f"Generation complete. Tokens: {token_count}, Total Time: {total_time:.2f}s, TTFT: {ttft:.2f}ms, TPS: {tps:.2f}")
model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})" # Reset status
except TypeError as te:
# Catch type errors specifically during setup if the input format is still wrong
logging.error(f"TypeError during generation setup: {te}", exc_info=True)
logging.error("Check if the input format {'input_ids': token_array} is correct.")
model_status = f"Generation Setup TypeError: {te}"
yield f"\n\nSorry, a TypeError occurred setting up generation: {te}"
except AttributeError as ae:
# Catch potential future API changes or issues during generation setup
logging.error(f"AttributeError during generation setup: {ae}", exc_info=True)
model_status = f"Generation Setup Error: {ae}"
yield f"\n\nSorry, an error occurred setting up generation: {ae}"
except Exception as e:
logging.error(f"Error during generation: {e}", exc_info=True)
model_status = f"Error during generation: {e}"
yield f"\n\nSorry, an error occurred during generation: {e}" # Yield error message
# --- Gradio Interface Functions ---
# 1. Function to add user message to chat history
def add_user_message(user_message, history):
"""Adds the user's message to the chat history for display."""
if not user_message:
return "", history # Clear input, return unchanged history
history = history + [[user_message, None]] # Append user message, leave bot response None
return "", history # Clear input textbox, return updated history
# 2. Function to handle bot response generation and streaming
def generate_bot_response(history, max_length, temperature, top_p, top_k):
"""Generates the bot's response based on the history and streams it."""
if not history or history[-1][1] is not None:
return history
user_prompt = history[-1][0] # Get the latest user prompt
model_history = history[:-1] # Prepare history for the model
response_stream = generate_response_stream(
user_prompt, model_history, max_length, temperature, top_p, top_k
)
history[-1][1] = "" # Initialize the bot response string in the history
for chunk in response_stream:
history[-1][1] += chunk # Append the chunk to the bot's message in history
yield history # Yield the *entire updated history* back to Chatbot
# 3. Function to clear chat
def clear_chat():
"""Clears the chat history and input."""
global model_status
if model and tokenizer and not model_status.startswith("Error") and not model_status.startswith("FATAL"):
model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
return None, [], model_status # Clear Textbox, Chatbot history, and update status display
# --- Initialize Model on App Start ---
try:
initialize_model()
except Exception as e:
print(f"FATAL: Model initialization failed: {e}")
# --- Gradio Interface ---
logging.info("Creating Gradio Interface...")
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="sky",
neutral_hue="slate",
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
)
with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
# Header Section
with gr.Row(equal_height=False):
with gr.Column(scale=3):
gr.Markdown(f"""
# Phi-4 Mini Instruct ONNX Chat 🤖
Interact with the quantized `{model_variant_name}` version of [`{MODEL_REPO}`]({HF_MODEL_URL})
running efficiently via [`onnxruntime-genai`]({ORT_GENAI_URL}) ({EXECUTION_PROVIDER.upper()}).
""")
with gr.Column(scale=1, min_width=150):
gr.Image(HF_LOGO_URL, elem_id="hf-logo", show_label=False, show_download_button=False, container=False, height=50)
model_status_text = gr.Textbox(value=model_status, label="Model Status", interactive=False, max_lines=2)
# Main Layout
with gr.Row():
# Chat Column
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Conversation",
height=600,
layout="bubble",
bubble_full_width=False,
avatar_images=(None, PHI_LOGO_URL)
)
with gr.Row():
prompt_input = gr.Textbox(
label="Your Message",
placeholder="<|user|>\nType your message here...\n<|end|>",
lines=4,
scale=9
)
with gr.Column(scale=1, min_width=120):
submit_button = gr.Button("Send", variant="primary", size="lg")
clear_button = gr.Button("🗑️ Clear Chat", variant="secondary")
# Settings Column
with gr.Column(scale=1, min_width=250):
gr.Markdown("### ⚙️ Generation Settings")
with gr.Group():
max_length = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Length", info="Max tokens in response.")
temperature = gr.Slider(minimum=0.0, maximum=1.5, value=0.7, step=0.05, label="Temperature", info="0.0 = deterministic\n>1.0 = more random")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Top-P", info="Nucleus sampling probability.")
top_k = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top-K", info="Limit to K most likely tokens (0=disable).")
gr.Markdown("---")
gr.Markdown("ℹ️ **Note:** Uses Phi-4 instruction format: \n`<|user|>\nPROMPT<|end|>\n<|assistant|>`")
gr.Markdown(f"Running on **{EXECUTION_PROVIDER.upper()}**.")
# Event Listeners
bot_response_inputs = [chatbot, max_length, temperature, top_p, top_k]
submit_event = prompt_input.submit(
fn=add_user_message,
inputs=[prompt_input, chatbot],
outputs=[prompt_input, chatbot],
queue=False,
).then(
fn=generate_bot_response,
inputs=bot_response_inputs,
outputs=[chatbot],
api_name="chat"
)
submit_button.click(
fn=add_user_message,
inputs=[prompt_input, chatbot],
outputs=[prompt_input, chatbot],
queue=False,
).then(
fn=generate_bot_response,
inputs=bot_response_inputs,
outputs=[chatbot],
api_name=False
)
clear_button.click(
fn=clear_chat,
inputs=None,
outputs=[prompt_input, chatbot, model_status_text],
queue=False
)
# Launch the Gradio app
logging.info("Launching Gradio App...")
demo.queue(max_size=20)
demo.launch(show_error=True, max_threads=40) |