File size: 14,562 Bytes
eed5424
 
 
 
 
 
 
e3d67e9
eed5424
 
 
 
 
 
 
 
f0fbb06
eed5424
 
 
513f7a6
f0fbb06
eed5424
 
 
 
513f7a6
 
 
f0fbb06
eed5424
 
 
 
 
513f7a6
eed5424
 
 
 
513f7a6
eed5424
513f7a6
 
eed5424
 
 
 
 
 
 
 
 
 
 
 
 
513f7a6
eed5424
 
 
 
 
513f7a6
eed5424
 
 
513f7a6
 
eed5424
f0fbb06
 
 
eed5424
513f7a6
eed5424
f0fbb06
 
 
 
 
eed5424
 
513f7a6
eed5424
 
f0fbb06
 
 
513f7a6
eed5424
513f7a6
 
 
eed5424
 
 
f0fbb06
 
eed5424
f0fbb06
eed5424
f0fbb06
 
eed5424
 
513f7a6
eed5424
 
e3d67e9
 
 
 
 
 
eed5424
 
 
 
 
 
513f7a6
eed5424
 
 
 
e3d67e9
 
 
 
 
 
 
eed5424
 
751f392
eed5424
513f7a6
eed5424
 
513f7a6
f0fbb06
ce67cd9
eed5424
e3d67e9
 
 
 
 
513f7a6
e3d67e9
513f7a6
e3d67e9
 
513f7a6
e3d67e9
 
 
 
513f7a6
e3d67e9
 
 
 
 
eed5424
 
513f7a6
 
 
eed5424
f0fbb06
513f7a6
 
e3d67e9
 
 
 
 
 
6d6d5c5
 
 
 
 
eed5424
 
513f7a6
f0fbb06
 
ce67cd9
f0fbb06
 
 
 
 
 
ce67cd9
f0fbb06
 
 
 
 
 
 
 
 
 
e3d67e9
f0fbb06
 
 
 
eed5424
ce67cd9
f0fbb06
 
 
 
 
513f7a6
f0fbb06
e3d67e9
ce67cd9
f0fbb06
 
 
eed5424
 
 
 
 
 
f0fbb06
eed5424
 
 
 
513f7a6
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fbb06
513f7a6
 
 
 
 
e3d67e9
513f7a6
 
 
 
 
 
 
 
e3d67e9
513f7a6
 
 
 
 
 
e3d67e9
513f7a6
f0fbb06
 
 
513f7a6
 
 
 
e3d67e9
513f7a6
 
 
 
e3d67e9
513f7a6
f0fbb06
513f7a6
e3d67e9
f0fbb06
 
 
 
 
e3d67e9
 
f0fbb06
e3d67e9
 
 
 
513f7a6
f0fbb06
e3d67e9
f0fbb06
 
 
 
 
 
 
513f7a6
e3d67e9
eed5424
 
513f7a6
 
 
e3d67e9
 
513f7a6
eed5424
513f7a6
eed5424
e3d67e9
f0fbb06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import gradio as gr
import onnxruntime_genai as og
import time
import os
from huggingface_hub import snapshot_download
import argparse
import logging
import numpy as np # Import numpy

# --- Logging Setup ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# --- Configuration ---
MODEL_REPO = "microsoft/Phi-4-mini-instruct-onnx"

# --- Defaulting to CPU INT4 for Hugging Face Spaces ---
EXECUTION_PROVIDER = "cpu" # Corresponds to installing 'onnxruntime-genai'
MODEL_VARIANT_GLOB = "cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/*"
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

# --- (Optional) Alternative GPU Configuration ---
# EXECUTION_PROVIDER = "cuda" # Corresponds to installing 'onnxruntime-genai-cuda'
# MODEL_VARIANT_GLOB = "gpu/gpu-int4-rtn-block-32/*"
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

LOCAL_MODEL_DIR = "./phi4-mini-onnx-model" # Directory within the Space
HF_LOGO_URL = "https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
HF_MODEL_URL = f"https://huggingface.co/{MODEL_REPO}"
ORT_GENAI_URL = "https://github.com/microsoft/onnxruntime-genai"
PHI_LOGO_URL = "https://microsoft.github.io/phi/assets/img/logo-final.png" # Phi logo for bot avatar

# Global variables for model and tokenizer
model = None
tokenizer = None
model_variant_name = os.path.basename(os.path.dirname(MODEL_VARIANT_GLOB)) # For display
model_status = "Initializing..."

# --- Model Download and Load ---
def initialize_model():
    """Downloads and loads the ONNX model and tokenizer."""
    global model, tokenizer, model_status
    logging.info("--- Initializing ONNX Runtime GenAI ---")
    model_status = "Downloading model..."
    logging.info(model_status)

    # --- Download ---
    model_variant_dir = os.path.join(LOCAL_MODEL_DIR, os.path.dirname(MODEL_VARIANT_GLOB))
    if os.path.exists(model_variant_dir) and os.listdir(model_variant_dir):
        logging.info(f"Model variant found in {model_variant_dir}. Skipping download.")
        model_path = model_variant_dir
    else:
        logging.info(f"Downloading model variant '{MODEL_VARIANT_GLOB}' from {MODEL_REPO}...")
        try:
            snapshot_download(
                MODEL_REPO,
                allow_patterns=[MODEL_VARIANT_GLOB],
                local_dir=LOCAL_MODEL_DIR,
                local_dir_use_symlinks=False
            )
            model_path = model_variant_dir
            logging.info(f"Model downloaded to: {model_path}")
        except Exception as e:
            logging.error(f"Error downloading model: {e}", exc_info=True)
            model_status = f"Error downloading model: {e}"
            raise RuntimeError(f"Failed to download model: {e}")

    # --- Load ---
    model_status = f"Loading model ({EXECUTION_PROVIDER.upper()})..."
    logging.info(model_status)
    try:
        # The simple constructor often works by detecting the installed ORT package.
        logging.info(f"Using provider based on installed package (expecting: {EXECUTION_PROVIDER})")
        model = og.Model(model_path) # Simplified model loading
        tokenizer = og.Tokenizer(model)
        model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
        logging.info("Model and Tokenizer loaded successfully.")
    except AttributeError as ae:
         logging.error(f"AttributeError during model/tokenizer init: {ae}", exc_info=True)
         logging.error("This might indicate an installation issue or version incompatibility with onnxruntime_genai.")
         model_status = f"Init Error: {ae}"
         raise RuntimeError(f"Failed to initialize model/tokenizer: {ae}")
    except Exception as e:
        logging.error(f"Error loading model or tokenizer: {e}", exc_info=True)
        model_status = f"Error loading model: {e}"
        raise RuntimeError(f"Failed to load model: {e}")

# --- Generation Function (Core Logic) ---
def generate_response_stream(prompt, history, max_length, temperature, top_p, top_k):
    """Generates a response using the Phi-4 ONNX model, yielding text chunks."""
    global model_status
    if not model or not tokenizer:
        model_status = "Error: Model not initialized!"
        yield "Error: Model not initialized. Please check logs."
        return

    # --- Prepare the prompt using the Phi-4 instruct format ---
    full_prompt = ""
    # History format is [[user1, bot1], [user2, bot2], ...]
    for user_msg, assistant_msg in history: # history here is *before* the current prompt
        full_prompt += f"<|user|>\n{user_msg}<|end|>\n"
        if assistant_msg: # Append assistant message only if it exists
             full_prompt += f"<|assistant|>\n{assistant_msg}<|end|>\n"

    # Add the current user prompt and the trigger for the assistant's response
    full_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"

    logging.info(f"Generating response (MaxL: {max_length}, Temp: {temperature}, TopP: {top_p}, TopK: {top_k})")

    try:
        input_tokens_list = tokenizer.encode(full_prompt) # Encode returns a list/array
        # Ensure input_tokens is a numpy array of the correct type (int32 is common)
        input_tokens = np.array(input_tokens_list, dtype=np.int32)
        # Reshape to (batch_size, sequence_length), which is (1, N) for single prompt
        input_tokens = input_tokens.reshape((1, -1))


        search_options = {
            "max_length": max_length,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "do_sample": True,
        }

        params = og.GeneratorParams(model)
        params.set_search_options(**search_options)

        # FIX: Create a dictionary mapping input names to tensors (numpy arrays)
        #      and pass this dictionary to set_inputs.
        #      Assuming the standard input name "input_ids".
        inputs = {"input_ids": input_tokens}
        logging.info(f"Setting inputs with keys: {inputs.keys()} and shape for 'input_ids': {inputs['input_ids'].shape}")
        params.set_inputs(inputs)

        start_time = time.time()
        # Create generator AFTER setting parameters including inputs
        generator = og.Generator(model, params)
        model_status = "Generating..." # Update status indicator
        logging.info("Streaming response...")

        first_token_time = None
        token_count = 0
        # Rely primarily on generator.is_done()
        while not generator.is_done():
            try:
                generator.compute_logits()
                generator.generate_next_token()
                if first_token_time is None:
                    first_token_time = time.time() # Record time to first token

                next_token = generator.get_next_tokens()[0]

                decoded_chunk = tokenizer.decode([next_token])
                token_count += 1

                # Secondary check: Stop if the model explicitly generates the <|end|> string literal.
                if decoded_chunk == "<|end|>":
                    logging.info("Assistant explicitly generated <|end|> token string.")
                    break

                yield decoded_chunk # Yield just the text chunk
            except Exception as loop_error:
                logging.error(f"Error inside generation loop: {loop_error}", exc_info=True)
                yield f"\n\nError during token generation: {loop_error}"
                break # Exit loop on error

        end_time = time.time()
        ttft = (first_token_time - start_time) * 1000 if first_token_time else -1
        total_time = end_time - start_time
        tps = (token_count / total_time) if total_time > 0 else 0

        logging.info(f"Generation complete. Tokens: {token_count}, Total Time: {total_time:.2f}s, TTFT: {ttft:.2f}ms, TPS: {tps:.2f}")
        model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})" # Reset status

    except TypeError as te:
        # Catch type errors specifically during setup if the input format is still wrong
        logging.error(f"TypeError during generation setup: {te}", exc_info=True)
        logging.error("Check if the input format {'input_ids': token_array} is correct.")
        model_status = f"Generation Setup TypeError: {te}"
        yield f"\n\nSorry, a TypeError occurred setting up generation: {te}"
    except AttributeError as ae:
         # Catch potential future API changes or issues during generation setup
         logging.error(f"AttributeError during generation setup: {ae}", exc_info=True)
         model_status = f"Generation Setup Error: {ae}"
         yield f"\n\nSorry, an error occurred setting up generation: {ae}"
    except Exception as e:
        logging.error(f"Error during generation: {e}", exc_info=True)
        model_status = f"Error during generation: {e}"
        yield f"\n\nSorry, an error occurred during generation: {e}" # Yield error message


# --- Gradio Interface Functions ---

# 1. Function to add user message to chat history
def add_user_message(user_message, history):
    """Adds the user's message to the chat history for display."""
    if not user_message:
        return "", history # Clear input, return unchanged history
    history = history + [[user_message, None]] # Append user message, leave bot response None
    return "", history # Clear input textbox, return updated history

# 2. Function to handle bot response generation and streaming
def generate_bot_response(history, max_length, temperature, top_p, top_k):
    """Generates the bot's response based on the history and streams it."""
    if not history or history[-1][1] is not None:
        return history

    user_prompt = history[-1][0] # Get the latest user prompt
    model_history = history[:-1] # Prepare history for the model

    response_stream = generate_response_stream(
        user_prompt, model_history, max_length, temperature, top_p, top_k
    )

    history[-1][1] = "" # Initialize the bot response string in the history
    for chunk in response_stream:
        history[-1][1] += chunk # Append the chunk to the bot's message in history
        yield history # Yield the *entire updated history* back to Chatbot

# 3. Function to clear chat
def clear_chat():
    """Clears the chat history and input."""
    global model_status
    if model and tokenizer and not model_status.startswith("Error") and not model_status.startswith("FATAL"):
         model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
    return None, [], model_status # Clear Textbox, Chatbot history, and update status display


# --- Initialize Model on App Start ---
try:
    initialize_model()
except Exception as e:
    print(f"FATAL: Model initialization failed: {e}")


# --- Gradio Interface ---
logging.info("Creating Gradio Interface...")

theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="sky",
    neutral_hue="slate",
    font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
)

with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
    # Header Section
    with gr.Row(equal_height=False):
        with gr.Column(scale=3):
            gr.Markdown(f"""
            # Phi-4 Mini Instruct ONNX Chat 🤖
            Interact with the quantized `{model_variant_name}` version of [`{MODEL_REPO}`]({HF_MODEL_URL})
            running efficiently via [`onnxruntime-genai`]({ORT_GENAI_URL}) ({EXECUTION_PROVIDER.upper()}).
            """)
        with gr.Column(scale=1, min_width=150):
             gr.Image(HF_LOGO_URL, elem_id="hf-logo", show_label=False, show_download_button=False, container=False, height=50)
             model_status_text = gr.Textbox(value=model_status, label="Model Status", interactive=False, max_lines=2)

    # Main Layout
    with gr.Row():
        # Chat Column
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(
                label="Conversation",
                height=600,
                layout="bubble",
                bubble_full_width=False,
                avatar_images=(None, PHI_LOGO_URL)
            )
            with gr.Row():
                 prompt_input = gr.Textbox(
                    label="Your Message",
                    placeholder="<|user|>\nType your message here...\n<|end|>",
                    lines=4,
                    scale=9
                 )
                 with gr.Column(scale=1, min_width=120):
                     submit_button = gr.Button("Send", variant="primary", size="lg")
                     clear_button = gr.Button("🗑️ Clear Chat", variant="secondary")

        # Settings Column
        with gr.Column(scale=1, min_width=250):
            gr.Markdown("### ⚙️ Generation Settings")
            with gr.Group():
                max_length = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Length", info="Max tokens in response.")
                temperature = gr.Slider(minimum=0.0, maximum=1.5, value=0.7, step=0.05, label="Temperature", info="0.0 = deterministic\n>1.0 = more random")
                top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, step=0.05, label="Top-P", info="Nucleus sampling probability.")
                top_k = gr.Slider(minimum=0, maximum=100, value=50, step=1, label="Top-K", info="Limit to K most likely tokens (0=disable).")
            gr.Markdown("---")
            gr.Markdown("ℹ️ **Note:** Uses Phi-4 instruction format: \n`<|user|>\nPROMPT<|end|>\n<|assistant|>`")
            gr.Markdown(f"Running on **{EXECUTION_PROVIDER.upper()}**.")

    # Event Listeners
    bot_response_inputs = [chatbot, max_length, temperature, top_p, top_k]

    submit_event = prompt_input.submit(
        fn=add_user_message,
        inputs=[prompt_input, chatbot],
        outputs=[prompt_input, chatbot],
        queue=False,
    ).then(
        fn=generate_bot_response,
        inputs=bot_response_inputs,
        outputs=[chatbot],
        api_name="chat"
    )

    submit_button.click(
        fn=add_user_message,
        inputs=[prompt_input, chatbot],
        outputs=[prompt_input, chatbot],
        queue=False,
    ).then(
        fn=generate_bot_response,
        inputs=bot_response_inputs,
        outputs=[chatbot],
        api_name=False
    )

    clear_button.click(
        fn=clear_chat,
        inputs=None,
        outputs=[prompt_input, chatbot, model_status_text],
        queue=False
    )

# Launch the Gradio app
logging.info("Launching Gradio App...")
demo.queue(max_size=20)
demo.launch(show_error=True, max_threads=40)